Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Clocking transient chemical changes by ultrafast electron diffraction

Abstract

With the advent of femtosecond (fs) time resolution in spectroscopic experiments, it is now possible to study the evolution of nuclear motions in chemical and photobiochemical reactions. In general, the reaction is clocked by an initial fs laser pulse (which establishes a zero of time) and the dynamics are probed by a second fs pulse; the detection methods include conventional and photoelectron spectroscopy and mass spectrometry1–4. Replacing the probe laser with electron pulses offers a means for imaging ultrafast structural changes with diffraction techniques5–8, which should permit the study of molecular systems of greater complexity (such as biomolecules). On such timescales, observation of chemical changes using electron scattering is non-trivial, because space-charge effects broaden the electron pulse width and because temporal overlap of the (clocking) photon pulse and the (probe) electron pulse must be established. Here we report the detection of transient chemical change during molecular dissociation using ultrafast electron diffraction. We are able to detect a change in the scattered electron beam with the zero of time established unambiguously and the timing of the changes clocked in situ. This ability to clock changes in scattering is essential to studies of the dynamics of molecular structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chergui, M. (ed.) Femtochemistry: Ultrafast Chemical and Physical Processes in Molecular Systems (World Scientific, Singapore, 1996).

  2. Manz, J. & Wöste, L. (eds) Femtosecond Chemistry (VCH, New York, 1995).

  3. Zewail, A. H. Femtochemistry: Ultrafast Dynamics of the Chemical Bond (World Scientific, Singapore, 1994).

    Google Scholar 

  4. Manz, J. & Castleman, A. W. Femtochemistry. J. Phys. Chem. (spec, iss.) 97 (48), 12423–12649 (1993).

    Article  Google Scholar 

  5. Williamson, J. C. & Zewail, A. H. Structural femtochemistry: experimental methodology. Proc. Natl Acad. Sci. USA 88, 5021–5025 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Williamson, J. C., Dantus, M., Kim, S. B. & Zewail, A. H. Ultrafast diffraction and molecular structure. Chem. Phys. Lett. 196, 529–534 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Williamson, J. C. & Zewail, A. H. Ultrafast electron diffraction. Velocity mismatch and temporal resolution in crossed-beam experiments. Chem. Phys. Lett. 209, 10–16 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Dantus, M., Kim, S. B., Williamson, J. C. & Zewail, A. H. Ultrafast electron diffraction. 5. Experimental time resolution and applications. J. Phys. Chem. 98, 2782–2796 (1994).

    Article  CAS  Google Scholar 

  9. Ráksi, F. et al. Ultrafast x-ray absorption probing of a chemical reaction. J. Chem. Phys. 104, 6066–6069 (1996).

    Article  ADS  Google Scholar 

  10. Tomov, I. V., Chen, P. & Rentzepis, P. M. Picosecond time-resolved x-ray diffraction during laser-pulse heating of an Au(lll) crystal. J. Appl Crystallogr. 28, 358–362 (1995).

    Article  CAS  Google Scholar 

  11. Kim, K.-J., Chattopadhyay, S. & Shank, C. V. Generation of femtosecond X-rays by 90-degrees Thomson scattering. Nucl. Instr. Meth. Phys. Res. A 341, 351–354 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Williamson, S., Mourou, G. & Li, J. C. M. Time-resolved laser-induced phase transformation in aluminum. Phys. Rev. Lett. 52, 2364–2367 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Elsayed-Ali, H. E. Time-resolved reflection high-energy electron diffraction of metal surfaces. Proc. SPIE 2521, 92–102 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Aeschlimann, M. et al. A picosecond electron gun for surface analysis. Rev. Sci. Instrum. 66, 1000–1009 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Hargittai, I. & Hargittai, M. (eds) Stereochemical Applications Of Gas-Phase Electron Diffraction (VCH, New York, 1988).

  16. Dibble, T. S. & Bartell, L. S. Electron diffraction studies of the kinetics of phase changes in molecular clusters. 3. Solid-state phase transformations in SeF6 and (CH3)3CC1. J. Phys. Chem. 96, 8603–8610 (1992).

    Article  CAS  Google Scholar 

  17. Ischenko, A. A. et al. A stroboscopical gas-electron diffraction method for the investigation of shortlived molecular species. Appl Phys. B 32, 161–163 (1983).

    Article  ADS  Google Scholar 

  18. Rood, A. P. & Milledge, J. Combined flash-photolysis and gas-phase electron diffraction studies of small molecules. J. Chem. Soc. Faraday Trans. 2 80, 1145–1153 (1984).

    Article  CAS  Google Scholar 

  19. Ischenko, A. A., Schäfer, L., Luo, J. Y. & Ewbank, J. D. Structural and vibrational kinetics by stroboscopic gas electron diffraction: the 193 nm photodissociation of CS2 . J. Phys. Chem. 98, 8673–8678 (1994).

    Article  CAS  Google Scholar 

  20. Williamson, J. C. & Zewail, A. H. Ultrafast electron diffraction. 4. Molecular structures and coherent dynamics. J. Phys. Chem. 98, 2766–2781 (1994).

    Article  CAS  Google Scholar 

  21. Williamson, S., Mourou, G. & Letzring, S. Picosecond electron diffraction. Proc. SPIE 348, 313–317 (1983).

    Article  ADS  Google Scholar 

  22. Kawasaki, M., Lee, S. J. & Bersohn, R. Photodissociation of molecular beams of methylene iodide and iodoform. J. Chem. Phys. 63, 809–814 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Baughcum, S. L. & Leone, S. R. Photofragmentation infrared emission studies of vibrationally excited free radicals CH3 and CH2I2 . J. Chem. Phys. 72, 6531–6545 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Hassel, O. & Viervoll, H. Electron diffraction investigation of molecular structure II, results obtained by the rotating sector method. Acta Chem. Scand. 1, 149–168 (1947).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, J., Cao, J., Ihee, H. et al. Clocking transient chemical changes by ultrafast electron diffraction. Nature 386, 159–162 (1997). https://doi.org/10.1038/386159a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386159a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing