Colossal magnetoresistance in Cr-based chalcogenide spinels


Manganese oxides with a perovskite structure1 exhibit a transition between a paramagnetic insulating phase and a ferromagnetic metal phase. Associated with this transition is an effect known as colossal magnetoresistance2–5 (CMR)—in the vicinity of the transition temperature, the materials exhibit a large change in resistance in response to an applied magnetic field. Such an effect, if optimized, might find potential application in magnetic devices. But the criteria for achieving (and hence optimizing) CMR are not clear, presenting a challenge for materials scientists. The accepted description of CMR in the manganite perovskites invokes the 'double-exchange' mechanism, whereby charge transport is enhanced by the magnetic alignment of neighbouring Mn ions of different valence configuration (Mn3+ and Mn4+), and inhibited by the formation of charge-induced localized lattice distortions6,7. Here we report the existence of a large magnetoresistive effect in a class of materials—Cr-based chalcogenide spinels—that do not possess heterovalency, distortion-inducing ions, manganese, oxygen or a perovskite structure. The realization of CMR in compounds having a spinel structure should open up a vast range of materials for the further exploration and exploitation of this effect.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Jonker, G. H. & Van Santen, J. H. Ferromagnetic compounds of manganese with perovskite structure. Physica 16, 337–349 (1950).

  2. 2

    Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413–415 (1994).

  3. 3

    Von Helmholt, R. et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx Ferromagnetic films. Phys. Rev. Lett. 71, 2331–2333 (1993).

  4. 4

    Chahara, K. et al. Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Appl. Phys. Lett. 63, 1990–1992 (1993).

  5. 5

    Kusters, R. M. et al. Magnetoresistance measurements on the magnetic semiconductor Nd0.5Pb0.5MnO3 . Physica B 155, 362–365 (1989).

  6. 6

    Millis, A. J., Shraiman, B. I. & Mueller, R. Dynamic Jahn-Teller effect and colossal magnetoresistance in La1−xSrxMnO3 . Phys. Rev. Lett. 77, 175–178 (1996).

  7. 7

    Röder, H., Zhang, J. & Bishop, A. R. Phys. Rev. Lett. 76, 1356–1359 (1996).

  8. 8

    Parkin, S. S. P. Giant magnetoresistance. Annu. Rev. Mater. Sci. 25, 357–388 (1995).

  9. 9

    Hwang, H. Y., Cheong, S.-W. & Batlogg, B. Enhancing the low-field magnetoresistive response in perovskite manganites. Appl. Phys. Lett. 68, 3494–3496 (1996).

  10. 10

    Sun, J. Z. et al. Observation of large low-field magnetoresistance in trilayer perpendicular transport devices made using doped manganite perovskites. Appl. Phys. Lett. 69, 3266–3268 (1996).

  11. 11

    Lu, Y. et al. Large magnetotunnelling effect at low magnetic fields in micrometer-scale epitaxial La0.67Sr0.33MnO3 tunnel junctions. Phys. Rev. B 54, 8357–8360 (1996).

  12. 12

    Balzers, P. K., Wojtowicz, P. J., Robbins, M. & Lopatin, E. Exchange interactions in ferromatnetic chromium chalcogenide spinels. Phys. Rev. 151, 367–377 (1966).

  13. 13

    Goldstein, L. & Gibart, P. in Proc. 17th Annu. Conf. on Magnetism and Magnetic Materials (eds Graham, C.D. Jr. & Rhyne, J. J.) 883–886 (AIP Conf. Proc. No. 5 Am. Inst. Phys., New York, 1972).

  14. 14

    Amith, A. & Gunsalus, G. L. Unique behavior of Seebeck coefficient in n-type CdCr2Se4 . J. Appl. Phys. 40, 1020–1022 (1969).

  15. 15

    Haacke, G. & Beegle, L. C. Magnetic properties of the spinel system Fe1−xCuxCr2S4 . J. Phys. Chem. Solids 28, 1699–1704 (1967).

  16. 16

    Haacke, G. & Beegle, L. C. Chalcogenide spinels. J. Appl. Phys. 39, 656–657 (1968).

  17. 17

    Haacke, G. & Beegle, L. C. Anomalous thermoelectric power of FeCr2S4 near the Curie temperature. Phys. Rev. Lett. 17, 427–428 (1966).

  18. 18

    Watanabe, T. Electrical properties of FeCr2S4 and CoCr2S4 . Solid State Commun. 12, 355–358 (1973).

  19. 19

    Watanabe, T. & Nakada, I. Preparation of some chalcogenide spinel single crystals and their electronic properties. Jpn. J. Appl. Phys. 17, 1745–1754 (1978).

  20. 20

    Ando, K., Nishihara, Y., Okuda, T. & Tsushima, T. Hall effect and magnetoresistance in Fe1−xCuxCr2S4 . J. Appl. Phys. 50, 1917–1919 (1979).

  21. 21

    Hwang, H. Y., Cheong, S.-W., Ong, N. P. & Batlogg, B. Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041–2044 (1996).

  22. 22

    Urushibara, A. et al. Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3 . Phys. Rev. B 51, 14103–14109 (1995).

  23. 23

    Lotgering, F. K., Van Stapele, R. P., Van Der Steen, G. H. A. M. & Wieringen, J. S. Magnetic properties of conductivity and ionic ordering in Fe1−xCuxCr2S4 . J. Phys. Chem. Solids 30, 799–804 (1969).

  24. 24

    Kogan, E. M. & Auslender, M. I. Anderson localization in ferromagnetic semiconductors due to spin disorder. Phys. Stat. Sol. B 147, 613–620 (1988).

  25. 25

    Shimakawa, Y., Kubo, Y. & Manako, T. Giant magnetoresistance in Tl2Mn2O7 with the pyrochlore structure. Nature 379, 53–55 (1996).

  26. 26

    Cheong, S.-W., Hwang, H. Y., Batlogg, B. & Rupp, L. W. Jr. Giant magnetoresistance in pyrochlore Tl2−xInxMn2O7 . Solid State Commun. 98, 163–166 (1996).

  27. 27

    Subramanian, M. A. et al. Colossal magnetoresistance without Mn3+/Mn4+ double exchange in the stoichiometric pyrochlore Tl2Mn2O7 . Science 273, 81–84 (1996).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramirez, A., Cava, R. & Krajewski, J. Colossal magnetoresistance in Cr-based chalcogenide spinels. Nature 386, 156–159 (1997).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.