Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origin of asteroid rotation rates in catastrophic impacts

Abstract

The rotation rates of asteroids, which are deduced from periodic fluctuations in their brightnesses1, are controlled by mutual collisions2–8. The link between asteroid spin and collision history is usually made with reference to impact experiments on centimetre-scale targets, where material strength governs the impact response2,3,9–11. Recent work, however, indicates that for objects of the size of most observed asteroids (≥1 km in diameter), gravity rather than intrinsic strength controls the dynamic response to collisions12–14. Here we explore this idea by modelling the effect of impacts on large gravitating bodies. We find that the fraction of a projectile's angular momentum that is retained by a target asteroid is both lower and more variable than expected from laboratory experiments, with spin evolution being dominated by 'catastrophic' collisions that eject 50 per cent of the target's mass. The remnant of an initially non-rotating silicate asteroid that suffers such a collision rotates at a rate of 2.9 per day, which is close to the observed mean asteroid rotation rate of 2.5 d–1. Moreover, our calculations suggest that the observed trend in the mean spin frequency for different classes of asteroids4 (2.2 d–1for C-type asteroids, 2.5 d–1 for S-type, and 4.0 d–1 for M-type) is due to increasing mean density, rather than increasing material strength.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harris, A. W. & Lupishko, D. F. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S.) 39–53 (Univ. Arizona Press, Tucson, 1989).

    Google Scholar 

  2. Farinella, P., Davis, D. R., Paolicchi, P., Cellino, A. & Zappalá, V. Astron. Astrophys. 253, 604–614 (1992).

    ADS  Google Scholar 

  3. Cellino, A., Zappalá, V., Davis, D. R., Farinella, P. & Paolicchi, P. Icarus 87, 391–402 (1990).

    Article  ADS  Google Scholar 

  4. Binzel, R. P., Farinella, P., Zappalá V. & Cellino A. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S.) 416–441 (Univ. Arizona Press, Tucson, 1989).

    Google Scholar 

  5. Davis, D. R., Weidenschilling, S. J., Farinella, P., Paolicchi, P. & Binzel, R. P. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S.) 805–826 (Univ. Arizona Press, Tucson, 1989).

    Google Scholar 

  6. Dobrovolskis, A. R. & Burns, J. A. Icarus 57, 464–476 (1984).

    Article  ADS  Google Scholar 

  7. Harris, A. W. Icarus 40, 142–153 (1979).

    ADS  Google Scholar 

  8. Burns, J. A. & Safronov, V. S. Mon. Not. R. Astron. Soc. 165, 403–411 (1973).

    Article  ADS  Google Scholar 

  9. Fujiwara, A. et al. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S.) 240–265 (Univ. Arizona Press, Tucson, 1989).

    Google Scholar 

  10. Fujiwara, A. & Tsukamoto, A. Icarus 48, 329–334 (1981).

    Article  ADS  Google Scholar 

  11. Yanagisawa, M., Eluszkiewicz, J. & Ahrens, T. J. Icarus 94, 272–282 (1991).

    Article  ADS  Google Scholar 

  12. Holsapple, K. A. Planet:Space Sci. 42, 1067–1078 (1994).

    ADS  Google Scholar 

  13. Ryan, E. V. & Melosh, H. J. Eos 76, F336 (1995).

    Google Scholar 

  14. Love, S. G. & Ahrens, T. J. Icarus 124, 141–155 (1996).

    Article  ADS  Google Scholar 

  15. Monaghan, J. J. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992).

    Article  ADS  Google Scholar 

  16. Harris, A. W. Lunar Planet. Sci. XXVII, 493–494 (1996).

    ADS  Google Scholar 

  17. Bottke, W. F. Jr & Melosh, H. J. Nature 381, 51–53 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Dones, L. & Tremaine, S. Science 259, 350–354 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Bottke, W. F. Jr, Nolan, M. C., Greenberg, R. & Kolvoord, R. A. Icarus 107, 255–268 (1994).

    Article  ADS  Google Scholar 

  20. Tillotson, J. H. General Atomic Rep. GA-3216 (General Atomic div. General Dynamics corp., San Diego, California, 1962).

    Google Scholar 

  21. Melosh, J. H. Impact Cratering: A Geologic Process (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  22. Belton, M. J. S. et al. Nature 374, 785–788 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, S., Ahrens, T. Origin of asteroid rotation rates in catastrophic impacts. Nature 386, 154–156 (1997). https://doi.org/10.1038/386154a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386154a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing