Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The nuclear receptor homologue Ftz-F1 and the homeodomain protein Ftz are mutually dependent cofactors

Abstract

Nuclear hormone receptors and homeodomain proteins are two classes of transcription factor that regulate major developmental processes. Both depend on interactions with other proteins for specificity and activity. The Drosophila gene fushi tarazu (ftz)y which encodes a homeodomain protein1 (Ftz), is required zygo-tically for the formation of alternate segments in the developing embryo2. Here we show that the orphan nuclear receptor α Ftz-Fl (ref. 3), which is deposited in the egg during oogenesis4, is an obligatory cofactor for Ftz. The two proteins interact specifically and directly, both in vitro and in vivo, through a conserved domain in the Ftz polypeptide. This interaction suggests that other nuclear receptor/homeodomain protein interactions maybe important and common in developing organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Laughon, A. & Scott, M. P. Nature 310, 25–30 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Wakimoto, B. T. & Kaufman, T. C. Dev. Biol. 81, 51–64 (1981).

    Article  CAS  Google Scholar 

  3. Lavorgna, G., Ueda, H., Clos, J. & Wu, C. Science 848–851 (1991).

  4. Lavorgna, G., Karim, F., Thummel, C. & Wu, C. Proc. Natl Acad. Sci. USA 90, 3004–3008 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Ohno, C. K. & Petkovich, M. Mech. Dev. 40, 13–24 (1992).

    Article  Google Scholar 

  6. Woodard, C., Baehrecke, E. & Thummel, C. Cell 79, 607–615 (1994).

    Article  CAS  Google Scholar 

  7. Ueda, H., Sonoda, S., Brown, J. L., Scott, M. P. & Wu, C. Genes Dev. 4, 624–635 (1990).

    Article  CAS  Google Scholar 

  8. Han, W., Yu, Y. & Pick, L. Mol. Cell. Biol. 13, 5549–5559 (1993).

    Article  CAS  Google Scholar 

  9. Tsai, C. & Gergen, P. Development 121, 453–462 (1995).

    CAS  PubMed  Google Scholar 

  10. Kornberg, T., Sidén, I., O'Farrell, P. & Simon, M. Cell 40, 45–53 (1985).

    Article  CAS  Google Scholar 

  11. Baker, N. E. EMBO J. 6, 1765–1773 (1987).

    Article  CAS  Google Scholar 

  12. DiNardo, S. & O'Farrell, P. H. Genes Dev. 1, 1212–1225 (1987).

    Article  CAS  Google Scholar 

  13. Ingham, P. W., Baker, N. E. & Martinez-Arias, A. Nature 331, 73–75 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Fitzpatrick, V. D., Percival-Smith, A., Ingles, C. J. & Krause, H. M. Nature 356, 610–612 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Copeland, J., Nasiadka, A., Dietrich, B. & Krause, H. M. Nature 379, 162–165 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Jost, W., Yu, Y., Pick, L., Preiss, A. & Maier, D. Wilhelm Roux Arch. Dev. Biol. 205, 160–170 (1995).

    Article  CAS  Google Scholar 

  17. Brown, S. J., Hilgenfeld, R. B. & Denell, R. E. Proc. Natl Acad. Sci. USA 91, 12922–12926 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Dawes, R., Dawson, I., Falciani, F., Tear, G. & Akam, M. Development 120, 1561–1572 (1994).

    CAS  PubMed  Google Scholar 

  19. Stewart, J. J., Brown, S. J., Beeman, R. W. & Dennell, R. E. A. Nature 350, 72–74 (1991).

    Article  ADS  Google Scholar 

  20. Ish-Horowicz, D., Pinchin, S. M., Ingham, P. W. & Gyurkovics, H. G. Cell 57, 223–232 (1989).

    Article  CAS  Google Scholar 

  21. Struhl, G. Nature 318, 677–680 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Carroll, S. B. & Scott, M. P. Cell 45, 113–126 (1986).

    Article  CAS  Google Scholar 

  23. Kassis, J. A. Genes Dev. 4, 433–443 (1990).

    Article  CAS  Google Scholar 

  24. Mangelsdorf, D. J. & Evans, R. M. Cell 83, 841–850 (1996).

    Article  Google Scholar 

  25. Erdélyi, M., Michon, A.-M., Guichet, A., Glotzer, J. B. & Ephrussi, A. Nature 377, 524–527 (1995).

    Article  ADS  Google Scholar 

  26. Patel, N. H. et al. Cell 58, 955–966 (1989).

    Article  CAS  Google Scholar 

  27. Krause, H. M., Klemenz, R. & Gehring, W. J. Genes Dev. 2, 1021–1036 (1988).

    Article  CAS  Google Scholar 

  28. Ephrussi, A. & Lehmann, R. Nature 358, 387–392 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Tautz, D. & Pfeifle, C. Chromosoma 98, 81–85 (1989).

    Article  CAS  Google Scholar 

  30. Staudt, L. M. et al. Science 241, 577–580 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Florence, B., Guichet, A., Ephrussi, A. & Laughon, A. Development 124, 839–847 (1997).

    CAS  PubMed  Google Scholar 

  32. Yu, Y. et al. Nature (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guichet, A., Copeland, J., Erdélyi, M. et al. The nuclear receptor homologue Ftz-F1 and the homeodomain protein Ftz are mutually dependent cofactors. Nature 385, 548–552 (1997). https://doi.org/10.1038/385548a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385548a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing