Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Template-directed colloidal crystallization


Colloidal crystals are three-dimensional periodic structures formed from small particles suspended in solution. They have important technological uses as optical filters1–3, switches4 and materials with photonic band gaps5,6, and they also provide convenient model systems for fundamental studies of crystallization and melting7–10. Unfortunately, applications of colloidal crystals are greatly restricted by practical difficulties encountered in synthesizing large single crystals with adjustable crystal orientation11. Here we show that the slow sedimentation of colloidal particles onto a patterned substrate (or template) can direct the crystallization of bulk colloidal crystals, and so permit tailoring of the lattice structure, orientation and size of the resulting crystals: we refer to this process as 'colloidal epitaxy'. We also show that, by using silica spheres synthesized with a fluorescent core12,13, the defect structures in the colloidal crystals that result from an intentional lattice mismatch of the template can be studied by confocal microscopy14. We suggest that colloidal epitaxy will open new ways to design and fabricate materials based on colloidal crystals and also allow quantitative studies of heterogeneous crystallization in real space.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Flaugh, P. L., O'Donnell, S. E. & Asher, S. A. Appl Spectrosc. 38, 847–850 (1984).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Kamenetzky, E. A., Mangliocco, L. G. & Panzer, H. P. Science 263, 207–210 (1994).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Sunkara, H. B., Jethmalani, J. M. & Ford, W. T. Chem. Mater. 6, 362–364 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Chang, S., Liu, L. & Asher, S. A. J. Am. Chem. Soc. 116, 6739–6744 (1994).

    CAS  Article  Google Scholar 

  5. 5

    Vos, W. L. et al. Phys. Rev. B 53, 16231–16235 (1996).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Tarhan, I. I. & Watson, G. H. Phys. Rev. Lett. 76, 315–318 (1996).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Ackerson, B. J. & Schätzel, K. Phys. Rev. E 52, 6448–6460 (1995).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Pusey, P. N. et al. Phys. Rev. Lett. 63, 2753–2757 (1989).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Pusey, P. N. & van Megen, W. Nature 320, 340–342 (1986).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Harland, J. L., Henderson, S. M., Underwood, S. M. & van Megen, W. Phys. Rev. Lett. 75, 3572–3575 (1995).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Palberg, T., Mönch, W., Schwarz, J. & Leiderer, P. J. Chem. Phys. 102, 5082–5087 (1995).

    ADS  CAS  Article  Google Scholar 

  12. 12

    van Blaaderen, A. & Vrij, A. Langmuir 8, 2921–2931 (1993).

    Article  Google Scholar 

  13. 13

    Verhaegh, N. A. M. & van Blaaderen, A. Langmuir 10, 1427–1438 (1994).

    CAS  Article  Google Scholar 

  14. 14

    van Blaaderen, A. & Wiltzius, P. Science 270, 1177–1179 (1995).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Parker, E. H. C. (ed.) The Technology and Physics of Molecular Beam Epitaxy (Plenum, New York, 1985).

  16. 16

    Davis, K. E., Russel, W. B. & Glantsching, W. J. Science 245, 507–510 (1989).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Frenkel, D. & Ladd, A. J. C. J. Chem. Phys. 81, 318–3193 (1984).

    Article  Google Scholar 

  18. 18

    Bourret, A., Fuoss, P., Geuillet, G. & Tatarenko, S. Phys. Rev. Lett. 70, 311–314 (1993).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Science 272, 85–87 (1996).

    ADS  CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Blaaderen, A., Ruel, R. & Wiltzius, P. Template-directed colloidal crystallization. Nature 385, 321–324 (1997).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing