Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extension of chromatin accessibility by nuclear matrix attachment regions

Abstract

Transcription of the variable region of the rearranged immunoglobulin μ gene is dependent on an enhancer sequence situated within one of the introns of the gene. Experiments with transgenic mice have shown that activation of the promoter controlling this transcription also requires the matrix-attachment regions (MARs) that flank the intronic enhancer1. As this μ gene enhancer can establish local areas of accessible chromatin2, we investigated whether the MARs can extend accessibility to more distal positions. We eliminated interactions between enhancer- and promoter-bound factors by linking μ enhancer/MAR fragments to the binding sites for bacteriophage RNA polymerases that were either close to or one kilobase distal to the enhancer. The μ enhancer alone mediated chromatin accessibility at the proximal site but required a flanking MAR to confer accessibility upon the distal promoter. This long-range accessibilty correlates with extended demethylation of the geμ enhancer to generate an extended domain of accessible chromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Forrester, W. C., van Genderen, C., Jenuwein, T. & Grosschedl, R. Science 265, 1221–1225 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Jenuwein, T., Forrester, W. C., Qiu, R. G. & Grosschedl, R. Genes Dev. 7, 2016–2032 (1993).

    Article  CAS  Google Scholar 

  3. Dillon, N. & Grosveld, F. Curr. Opin. Genet. Dev. 4, 260–264 (1994).

    Article  CAS  Google Scholar 

  4. Ptashne, M. Nature 322, 697–701 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Felsenfeld, G. Nature 355, 219–224 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Jenuwein, T. & Grosschedl, R. Genes Dev. 5, 932–943 (1991).

    Article  CAS  Google Scholar 

  7. Adams, J. M. et al. Nature 318, 533–538 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Lennon, G. G. & Perry, R. P. Nature 318, 475–478 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Cockerill, P. N., Yuen, M. H. & Garrard, W. T. J. Biol. Chem. 262, 5394–5397 (1987).

    CAS  PubMed  Google Scholar 

  10. Ernst, P. & Smale, S. Immunity 2, 427–438 (1995).

    Article  CAS  Google Scholar 

  11. Gasser, S. M. & Laemmli, U. K. Cell 46, 521–530 (1986).

    Article  CAS  Google Scholar 

  12. Cockerill, P. N. & Garrard, W. T. Cell 44, 273–282 (1986).

    Article  CAS  Google Scholar 

  13. Aronow, B. J. et al. Mol. Cell. Biol. 15, 1123–1135 (1995).

    Article  CAS  Google Scholar 

  14. Stief, A., Winter, D. M., Stratling, W. H. & Sippel, A. E. Nature 341, 343–345 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Lorch, Y., LaPointe, J. W. & Kornberg, R. D. Cell 49, 203–210 (1987).

    Article  CAS  Google Scholar 

  16. Reitman, M., Lee, E., Westphal, H. & Felsenfeld, G. Mol. Cell. Biol. 13, 3990–3998 (1993).

    Article  CAS  Google Scholar 

  17. Yisraeli, J. & Szyf, M. in DNA Methylation (eds Razin, A., Cedar, H. & Riggs, A.) 353–378 (Springer, New York, 1984).

    Book  Google Scholar 

  18. Lichtenstein, M., Keini, G., Cedar, H. & Bergman, Y. Cell 76, 913–923 (1994).

    Article  CAS  Google Scholar 

  19. McArthur, M. & Thomas, J. O. EMBO J. 15, 1705–1714 (1996).

    Article  CAS  Google Scholar 

  20. Zhao, K., Kas, E., Gonsales, E. & Laemmli, U. K. EMBO J. 12, 3237–3247 (1993).

    Article  CAS  Google Scholar 

  21. Hebbes, T. R., Clayton, A. L., Thorne, A. W. & Crane-Robinson, E. author: or C? EMBO J. 7, 1395–1402 (1994).

    Article  Google Scholar 

  22. Turner, B. M., Birley, A. J. & Lavender, J. Cell 69, 375–384 (1992).

    Article  CAS  Google Scholar 

  23. Brownell, J. E. & Allis, C. D. Curr. Opin. Genet. Dev. 6, 176–184 (1996).

    Article  CAS  Google Scholar 

  24. Dickinson, L. A., Joh, T., Kohwi, Y. & Kohwi-Shigematsu, T. Cell 70, 631–645 (1992).

    Article  CAS  Google Scholar 

  25. Herrscher, R. F. et al. Genes Dev. 9, 3067–3082 (1995).

    Article  CAS  Google Scholar 

  26. Cullen, K. E., Winston, F. & Carlson, M. Trends Genet. 8, 387–391 (1992).

    Article  CAS  Google Scholar 

  27. Tsukiyama, T. & Wu, C. Cell 83, 1011–1020 (1995).

    Article  CAS  Google Scholar 

  28. Ferstenstein, R. et al. Science 271, 1123–1125 (1996).

    Article  ADS  Google Scholar 

  29. Walters, M. et al. Genes Dev. 10, 185–195 (1996).

    Article  CAS  Google Scholar 

  30. Cai, H. & Levine, M. Nature 376, 533–536 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenuwein, T., Forrester, W., Fernández-Herrero, L. et al. Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 385, 269–272 (1997). https://doi.org/10.1038/385269a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385269a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing