Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct mechanical measurement of interatomic potentials

Abstract

THE bonding potential between atoms determines all the key properties of matter. It is usually deduced from a wide variety of experimental parameters such as elastic moduli, binding energy and vibrational nonlinearities. These provide an indirect route to quantities such as virial coefficients which characterize the variation of potential energy with interatomic spacing1. Here we report use of a modified atomic force microscope2 to measure mechanically the interatomic forces between a tip and the sample surface as a function of separation. We use a magnetically controlled feedback mechanism to resist the 'jump to contact' that commonly occurs in mechanical force measurements at small separations, enabling us to map out reversible curves to separations closer than the point of inflection in the potential-energy curve. This method provides a direct means for continuous measurement of forces between atoms as they approach towards contact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pettifor, D. G. Bonding and Structure of Molecules and Solids (Clarendon, Oxford, 1995).

    Google Scholar 

  2. Binnig, G., Quate, C. F. & Gerber, Ch. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Tabor, D. & Winterton, R. H. S. Nature 219, 1120–1121 (1968).

    Article  ADS  CAS  Google Scholar 

  4. Israelachvili, J. N. Intermolecular and Surface Forces with Applications to Colloidal and Biological Systems (Academic, London, 1985).

    Google Scholar 

  5. Dürig, U., Züger, O. & Pohl, D. W. Phys. Rev. Lett. 65, 349–352 (1990).

    Article  ADS  Google Scholar 

  6. Jarvis, S. P., Oral, A., Weihs, T. P. & Pethica, J. B. Rev. Sci. Instrum. 64, 3515–3520 (1993).

    Article  ADS  CAS  Google Scholar 

  7. O'Shea, S. J., Welland, M. E. & Pethica, J. B. Chem. Phys. Lett. 223, 336–340 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Jarvis, S. P., Yamada, H., Yamamoto, S.-I. & Tokumoto, H. Rev. Sci. Instrum. 67, 2281–2285 (1996).

    Article  ADS  Google Scholar 

  9. Pashley, M. D., Pethica, J. B. & Tabor, D. Wear 100, 7–31 (1984).

    Article  CAS  Google Scholar 

  10. Howald, L., Luethi, R., Meyer, E., Guethner, P. & Guentherodt, H.-J. Z. Phys. B 93, 267–268 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Sutton, A. P. & Pethica, J. B. J. Phys. C 2, 5317–5326 (1990).

    Google Scholar 

  12. Landmann, U., Luedtke, W. D., Burnham, N. A. & Colton, R. J. Science 248, 454–461 (1990).

    Article  ADS  Google Scholar 

  13. Heine, V., Robertson, I. J. & Payne, M. C. Phil. Trans. R. Soc. A 334, 393–405 (1991).

    ADS  CAS  Google Scholar 

  14. Sutton, A. P. Electronic Structure of Materials (Oxford Univ. Press, 1993).

    Google Scholar 

  15. Clarke, A. R. H. et al. Phys. Rev. Lett. 76, 1276–1279 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Eigler, D. M. & Schweizer, E. K. Nature 344, 524–526 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Johnson, K. L., Kendall, K. & Roberts, A. D. Proc. R. Soc. Lond. A 324, 301–313 (1971).

    Article  ADS  CAS  Google Scholar 

  18. Greenwood, J. A. Proc. R. Soc. Lond. A (submitted).

  19. Tabor, D. J. Colloid Interface Sci. 58, 2–13 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Perez, R., Payne, M. C. & Simpson, A. D. Phys. Rev. Lett. 75, 4748–4751 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Giessibl, F. J. Science 267, 68–71 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Kitamura, S. & Iwatsuki, M. Jpn. J. Appl. Phys. 34, L145–L148 (1995).

    Article  CAS  Google Scholar 

  23. Sugawara, Y., Ohta, M., Ueyama, H. & Morita, S. Science 270, 1646–1648 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarvis, S., Yamada, H., Yamamoto, SI. et al. Direct mechanical measurement of interatomic potentials. Nature 384, 247–249 (1996). https://doi.org/10.1038/384247a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384247a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing