Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Odour encoding by temporal sequences of firing in oscillating neural assemblies

Abstract

STIMULUS-EVOKED oscillatory synchronization of activity has been observed in many neural systems, including the cerebral cortex of mammals and the brain of insects1–8. The possible functions of such rhythmic synchronization in neural coding, however, remain largely speculative9–13. In the locust, odours evoke activity in dynamic (evolving) ensembles of transiently synchronized neurons8,14,15. We report here that the active neurons composing these ensembles change in a stimulus-specific manner and with a high degree of reliability on a cycle-by-cycle basis during an odour response. Hence, information about an odour is contained not only in the neural assembly active at each oscillation cycle, but also in the precise temporal sequence in which these assemblies are updated during an odour response. Neural coding with oscillations thus allows combinatorial representations in time as well as in space.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Adrian, E. D. J. Physiol. (Lond.) 100, 459–473 (1942).

    CAS  Article  Google Scholar 

  2. Freeman, W. J. J. Neurophysiol. 23, 111–131 (1960).

    CAS  Article  Google Scholar 

  3. Gray, C. M. & Singer, W. Proc. Natl Acad. Sci. USA 86, 1698–1702 (1989).

    ADS  CAS  Article  Google Scholar 

  4. Hubel, D. H. & Wiesel, T. N. J. Neurophysiol. 28, 229–289 (1965).

    CAS  Article  Google Scholar 

  5. Pöppel, E. & Logothetis, N. Natürwissenschaften 73, 267–268 (1986).

    ADS  Article  Google Scholar 

  6. Gelperin, A. & Tank, D. W. Nature 345, 437–440 (1990).

    ADS  CAS  Article  Google Scholar 

  7. Laurent, G. & Naraghi, M. J. Neurosci. 14, 2993–3004 (1994).

    CAS  Article  Google Scholar 

  8. Laurent, G. & Davidowitz, H. Science 265, 1872–1875 (1994).

    ADS  CAS  Article  Google Scholar 

  9. Gray, C. M. J. Comput Neurosci. 1, 11–38 (1994).

    CAS  Article  Google Scholar 

  10. Singer, W. Concepts Neurosci. 1, 1–26 (1990).

    Google Scholar 

  11. Hopfield, J. J. Nature 376, 33–36 (1995).

    ADS  CAS  Article  Google Scholar 

  12. Milner, P. Psychol. Rev. 81, 521–535 (1974).

    CAS  Article  Google Scholar 

  13. von der Malsburg, C. Tne Correlation Theory of Brain Function 81–82 (Internal Report, MPI für Biophysikalische Chemie, Göttingen, Germany, 1981).

    Google Scholar 

  14. Laurent, G., Wehr, M. & Davidowitz, H. J. Neurosci. 16, 3837–3847 (1996).

    CAS  Article  Google Scholar 

  15. Laurent, G. Trends Neurosci. (in the press).

  16. von der Malsburg, C. & Schneider, W. Biol Cybern. 54, 29–40 (1986).

    CAS  Article  Google Scholar 

  17. Singer, W. & Gray, C. M. Annu. Rev. Neurosci. 18, 555–586 (1995).

    CAS  Article  Google Scholar 

  18. Brillinger, D. Time Series (Holden-Day, San Francisco, 1981).

    MATH  Google Scholar 

  19. Shepherd, G. M. Neuron 13, 771–790 (1994).

    CAS  Article  Google Scholar 

  20. Cinelli, A. R., Hamilton, K. A. & Kauer, J. S. J. Neurophysiol. 73, 2053–2071 (1995).

    CAS  Article  Google Scholar 

  21. Gray, C. M. & Skinner, J. E. Exp. Brain Res. 69, 378–386 (1988).

    CAS  Article  Google Scholar 

  22. Bressler, S. L. & Freeman, W. J. Electroencephalogr. Clin. Neurophysiol. 50, 19–24 (1980).

    CAS  Article  Google Scholar 

  23. Smith, B. H. & Menzel, R. Ethology 82, 68–81 (1989).

    Article  Google Scholar 

  24. Murthy, V. N. & FetZ, E. E. Proc. Natl Acad. Sci. USA 89, 5670–5674 (1992).

    ADS  CAS  Article  Google Scholar 

  25. Mainen, Z. F. & Sejnowski, T. J. Science 268, 1503–1506 (1995).

    ADS  CAS  Article  Google Scholar 

  26. Abeles, M., Bergman, H., Margalit, E. & Vaadia, E. J. Neurophysiol. 70, 1629–1638 (1993).

    CAS  Article  Google Scholar 

  27. Middlebrooks, J. C., Clock, A. E., Xu, L. & Green, D. M. Science 264, 842–844 (1994).

    ADS  CAS  Article  Google Scholar 

  28. Bialek, W., de Ruyter van Steveninck, R. & Warland, D. Science 252, 1854–1857 (1991).

    ADS  CAS  Article  Google Scholar 

  29. Paulin, M. G. Biol. Cybern. 66, 525–531 (1992).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wehr, M., Laurent, G. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384, 162–166 (1996). https://doi.org/10.1038/384162a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384162a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing