Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of slab temperature on deep-earthquake aftershock productivity and magnitude–frequency relations

Abstract

DEEP earthquakes generally show fewer aftershocks and a larger variability in magnitude–frequency relations than shallow earthquakes1–5. These characteristics and the factors that control them may place constraints on the mechanism of deep earthquakes, which is still uncertain6–8. Here we show that systematic variations in aftershock productivity and magnitude–frequency relations are related to the temperature of the downgoing slab, as inferred from the vertical velocity and age of the subducting lithosphere. Deep earthquakes with substantial aftershock sequences are found only in colder slabs, and earthquakes in warmer slabs consistently show few aftershocks. Magnitude–frequency relations for deep earthquakes also show systematic variations as a function of slab thermal structure, with warmer slabs showing fewer small earthquakes (lower 'b-values'). The statistical properties of deep earthquakes thus appear to be temperature sensitive to an extent not observed for shallow earthquakes, and not adequately explained by simple geometrical limitations on fault width.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Giardini, D. J. Geophys. Res. 93, 2095–2105 (1988).

    Article  ADS  Google Scholar 

  2. Frohlich, C. Annu. Rev. Earth Planet. Sci. 17, 227–254 (1989).

    Article  ADS  Google Scholar 

  3. Frohlich, C. & Davis, S. D. J. Geophys. Res. 98, 631–644 (1993).

    Article  ADS  Google Scholar 

  4. Okal, E. A. & Kirby, S. H. Phys. Earth Planet. Inter. 92, 169–187 (1995).

    Article  ADS  Google Scholar 

  5. Wiens, D. A. & McGuire, J. J. Geophys. Res. Lett. 22, 2245–2248 (1995).

    Article  ADS  Google Scholar 

  6. Kirby, S. H., Stein, S., Okal, E. A. & Rubie, D. Rev. Geophys. 34, 261–306 (1996).

    Article  ADS  Google Scholar 

  7. Green, H. W. I. & Houston, H. Annu. Rev. Earth Planet. Sci. 24, 169–213 (1995).

    Article  ADS  Google Scholar 

  8. McGuire, J. J., Wiens, D. A., Shore, P. J. & Bevis, M. G. J. Geophys. Res. (in the press).

  9. Wiens, D. A. et al. Nature 372, 540–543 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Wiens, D. A., McGuire, J. J. & Shore, P. J. J. Geophys. Res. (in the press).

  11. Myers, S. C. et al. Geophys. Res. Lett. 22, 2269–2272 (1995).

    Article  ADS  Google Scholar 

  12. Davis, S. D. & Frohlich, C. J. Geophys. Res. 96, 6335–6350 (1991).

    Article  ADS  Google Scholar 

  13. Kisslinger, C. Adv. Geophys. 38, 1–36 (1996).

    Article  ADS  Google Scholar 

  14. Molnar, P., Freedman, D. & Shih, J. S. F. Geophys. J. R. Astron. Soc. 56, 41–54 (1979).

    Article  ADS  Google Scholar 

  15. Bevis, M. et al. Nature 374, 249–251 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Engebretson, D. E. & Kirby, S. (abstr.) Eos 87, 33–54 (1994).

    Google Scholar 

  17. Okal, E. A. & Bina, C. R. Phys. Earth Planet. Inter. 87, 33–54 (1994).

    Article  ADS  Google Scholar 

  18. Pacheco, J. F., Scholz, C. H. & Sykes, L R. Nature 355, 71–73 (1992).

    Article  ADS  Google Scholar 

  19. Okal, E. A. & Romanowicz, B. A. Phys. Earth Planet. Inter. 87, 55–76 (1994).

    Article  ADS  Google Scholar 

  20. Weimer, S. & Benoit, J. P. Geophys. Res. Lett. 23, 1557–1560 (1996).

    Article  ADS  Google Scholar 

  21. Mori, J. & Abercrombie, R. (abstr.) Eos 76, 388 (1995).

    Article  Google Scholar 

  22. Anderson, R. N., Hasegawa, A., Umino, N. & Takagi, A. J. Geophys. Res. 85, 1389–1398 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Rundle, J. B. J. Geophys. Res. 94, 12337–12342 (1989).

    Article  ADS  Google Scholar 

  24. Singh, S. K. & Suarez, G. Bull. Seismol. Soc. Am. 78, 230–242 (1988).

    Google Scholar 

  25. Abercrombie, R. E. & Mori, J. Nature 381, 303–307 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Yamanaka, Y. & Shimazaki, K. J. Phys. Earth 38, 305–324 (1990).

    Article  Google Scholar 

  27. Ogawa, M. J. Geophys. Res. 92, 13801–13810 (1987).

    Article  ADS  Google Scholar 

  28. Hobbs, B. E. & Ord A. J. Geophys. Res. 93, 10521–10540 (1988).

    Article  ADS  Google Scholar 

  29. Kirby, S. H. J. Geophys. Res. 92, 13789–13800 (1987).

    Article  ADS  CAS  Google Scholar 

  30. Green, H. W. & Burnley, P. C. Nature 341, 733–737 (1989).

    Article  ADS  Google Scholar 

  31. Green, H. W., Young, T. E., Walker, D. & Scholz, C. H. Nature 348, 720–722 (1990).

    Article  ADS  CAS  Google Scholar 

  32. Abe, K. J. Phys. Earth 30, 321–330 (1982).

    Article  ADS  Google Scholar 

  33. Huang, W.-C., Okal, E. A., Ekstrom, G. & Salganik, M. P. Phys. Earth Planet. Inter. (in the press).

  34. Dziewonski, A. M., Chou, T.-A. & Woodhouse, J. H. J. Geophys. Res. 86, 2825–2852 (1981).

    Article  ADS  Google Scholar 

  35. Cande, S. C. et al. Magnetic Lineations of the World's Ocean Basins (Am. Assoc. Petroleum Geologists, Tusla, OK, 1989).

    Google Scholar 

  36. Harland, W. B. et al. A Geologic Time Scale—1989 (Cambridge Univ. Press, 1990).

    Google Scholar 

  37. DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. Geophys. J. Int. 101, 425–478 (1990).

    Article  ADS  Google Scholar 

  38. Hussong, D. M. & Uyeda, S. Init. Rep. DSDP Leg 909–929 (1991).

  39. Taylor, B. et al. J. Geophys. Res. 96, 16113–16129 (1991).

    Article  ADS  Google Scholar 

  40. Gripp, A. E. & Gordon, R. G. Geophys. Res. Lett. 17, 1107–1112 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiens, D., Gilbert, H. Effect of slab temperature on deep-earthquake aftershock productivity and magnitude–frequency relations. Nature 384, 153–156 (1996). https://doi.org/10.1038/384153a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384153a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing