Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of social organization on gene flow in the fire ant Solenopsis invicta

Abstract

A CONTROVERSIAL model of speciation proposes that the development of alternative social organizations within populations of group-living animals may drive the inception of reproductive isolation1–3. The alternative social behaviours, which are selectively favoured in some social or ecological contexts, may be correlated with distinctive reproductive traits such that significant barriers to interbreeding emerge between coexisting social variants. Evidence for this mode of speciation is almost nonexistent3–8, but it provides one of the most compelling mechanisms for sympatric speciation3,8 and could conceivably explain many species origins. Here we examine variation in mito-chondrial DNA and two unique nuclear genes to demonstrate that gene flow between sympatric social forms of the fire ant Solenopsis invicta is restricted to only one of four possible routes. The loss of the other routes results from incompatibilities in the social systems of the two forms, demonstrating the potential for social selection to generate significant barriers to gene flow and to initiate reproductive isolation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. West-Eberhard, M. J. Q. Rev. Biol 58, 155–183 (1983).

    Article  Google Scholar 

  2. West-Eberhard, M. J. Proc. Natl Acad. Sci. USA 83, 1388–1392 (1986).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bourke, A. F. G. & Franks, N. R. Biol. J. Linn. Soc. 43, 157–178 (1991).

    Article  Google Scholar 

  4. Crozier, R. H. Annu. Rev. Entomol. 22, 263–288 (1977).

    Article  Google Scholar 

  5. Buschinger, A. Trends Ecol. Evol. 1, 155–160 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Ward, P. S. in The Genetics of Social Evolution (eds Breed, M. D. & Page, R. E.) 123–148 (Westview, Boulder, 1989).

    Google Scholar 

  7. Buschinger, A. Z. Zool. Syst. Evol. Forsch. 28, 241–260 (1990).

    Article  Google Scholar 

  8. Ross, K. G. & Keller, L. Annu. Rev. Ecol. Syst. 26, 631–656 (1995).

    Article  Google Scholar 

  9. Ross, K. G., Vargo, E. L. & Keller, L. Evolution (in the press).

  10. Ross, K. G. & Shoemaker, D. D. Evolution 47, 1595–1605 (1993).

    Article  PubMed  Google Scholar 

  11. Excoffier, L., Smouse, P. E. & Quattro, J. M. Genetics 131, 470–491 (1992).

    Google Scholar 

  12. Markin, G. P., Dillier, J. H., Hill, S. O., Blum, M. S. & Hermann, H. R. J. Georgia Entomol. Soc. 6, 145–156 (1971).

    Google Scholar 

  13. Ross, K. G. Nature 355, 347–349 (1992).

    Article  ADS  Google Scholar 

  14. Keller, L. & Ross, K. G. Science 260, 1107–1110 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Ross, K. G. & Keller, L. Am. Nat. 146, 325–348 (1995).

    Article  Google Scholar 

  16. Ross, K. G., Vargo, E. L. & Fletcher, D. J. C. Evolution 41, 979–990 (1987).

    Article  PubMed  Google Scholar 

  17. Markin, G. P., Collins, H. L. & Dillier, J. H. Ann. Entomol. Soc. Am. 65, 1053–1058 (1972).

    Article  Google Scholar 

  18. Porter, S. D. J. Entomol. Sci. 26, 474–478 (1991).

    Article  Google Scholar 

  19. Ross, K. G., Vargo, E. L. & Keller, L. Proc. Natl Acad. Sci. USA 93, 3021–3025 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Glancey, B. M. & Lofgren, C. S. Florida Entomol. 71, 581–587 (1988).

    Article  Google Scholar 

  21. Tschinkel, W. R. & Howard, D. F. Behav. Ecol. Sociobiol. 12, 103–113 (1983).

    Article  Google Scholar 

  22. Fletcher, D. J. C. & Blum, M. S. Science 219, 312–314 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Porter, S. D., Van Eimeren, B. & Gilbert, L. E. Ann. Entomol. Soc. Am. 81, 913–918 (1988).

    Article  Google Scholar 

  24. Ross, K. G., Vargo, E. L., Keller, L. & Trager, J. C. Genetics 135, 843–854 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vargo, E. L. J. Evol. Biol. (in the press).

  26. Bourke, A. F. G. & Franks, N. R. Social Evolution in Ants (Princeton Univ. Press, Princeton, NJ, 1995).

    Google Scholar 

  27. Crozier, R. H. & Crozier, Y. C. Genetics 133, 97–117 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shoemaker, D. D., Costa, J. T. & Ross, K. G. Heredity 69, 573–582 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoemaker, D., Ross, K. Effects of social organization on gene flow in the fire ant Solenopsis invicta. Nature 383, 613–616 (1996). https://doi.org/10.1038/383613a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383613a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing