Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Increased dimethyl sulphide concentrations in sea water from in situ iron enrichment

Abstract

THE concentrations of bioavailable iron in the surface waters of some ocean regions may indirectly modulate climate by controlling phytoplankton productivity and thus the amounts of carbon dioxide1 and dimethyl sulphide (DMS) that are exchanged with the atmosphere. Oxidation of DMS is involved in the formation of atmospheric sulphate particles, which can exert a climate cooling effect2 directly (by scattering and absorbing solar radiation), and indirectly (by affecting cloudiness and hence global albedo). But direct evidence supporting the hypothesis that DMS production in the ocean is affected by iron availability is lacking. Here we report changes in the concentrations of DMS in response to in situ iron-enrichment during two ecosystem-scale experiments designed to investigate the biological and chemical effects of iron fertilization of under-productive surface ocean waters3,4. The first such experiment revealed a limited overall biological response3 and no significant changes in DMS concentrations, although the concentrations of its biochemical precursor doubled5. The second experiment, designed to better mimic the natural process of iron enrichment, elicited a much stronger biological response4, and DMS concentrations increased by a factor of 3.5. This result provides direct support for an important link in the iron–DMS–climate hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Martin, J. H. Palaeoceanography 5, 1–13 (1990).

    Article  ADS  Google Scholar 

  2. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Nature 326, 655–661 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Martin, J. H. et al. Nature 372, 123–129 (1994).

    Article  ADS  Google Scholar 

  4. Coale, K. Nature 383 495–501 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Turner, S. M., Malin, G., Coale, K. H., Ondrusek, M. E., Law, C. S. & Liss, P. S. Deep-Sea Research in press.

  6. Malin, G., Turner, S. M. & Liss, P. S. J. Phycol. 28, 590–597 (1992).

    Article  CAS  Google Scholar 

  7. Upstill-Goddard, R. C., Watson, A. J., Wood, J. & Liddicoat, M. I. Anal. Chim. Acta 249, 555–562 (1991).

    Article  CAS  Google Scholar 

  8. Law, C. S., Watson, A. J., Liddicoat, M. I. & Stanton, T. Deep-Sea Res. II (in the press).

  9. Jickells, T. Mar. Chem. 48, 199–214 (1995).

    Article  CAS  Google Scholar 

  10. Donaghay, P. L. et al. Oceanography 4, 62–70 (1991).

    Article  Google Scholar 

  11. Young, R. W. et al. Glob. Biogeochem. Cycles 5, 119–134 (1991).

    Article  ADS  CAS  Google Scholar 

  12. de Baar, H. J. W. et al. Nature 373, 412–415 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Turner, S. M., Nightingale, P. D., Broadgate, W. & Liss, P. S. Deep-Sea Research 42, 1059–1080 (1995).

    Article  ADS  CAS  Google Scholar 

  14. De Angelis, M., Barkov, N. I. & Petrov, V. N. Nature 325, 318–321 (1987).

    Article  ADS  Google Scholar 

  15. Saigne, C. & Legrand, M. Nature 330, 240–242 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Legrand, M. et al. Nature 350, 144–146 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Prahl, F. G. Mar. Chem. 39, 167–185 (1992).

    Article  CAS  Google Scholar 

  18. Liss, P. S., Malin, G., Turner, S. M. & Holligan, P. M. J. Mar. Systems 5, 41–53 (1994).

    Article  ADS  Google Scholar 

  19. Hansen, M. E. & Saltzman, E. S. Geophys. Res. Lett. 20, 1163–1166 (1993).

    Article  ADS  Google Scholar 

  20. Mitchell, J. F. B., Johns, T. C., Gregory, J. M. & Tett, S. F. B. Nature 376, 501–504 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Houghton, J. T., Callander, B. A. & Varney, S. K. (eds) Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment (Cambridge Univ. Press, 1992).

  22. Twomey, S. Atmos. Envir. 25, 2435–2442 (1991).

    Article  Google Scholar 

  23. Watson, A. J. et al. Nature 371, 143–145 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Cooper, D. J., Watson, A. J. & Nightingale, P. D. Nature 383 511–513 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Johnson, K. S., Gordon, R. M., Coale, K. H. & Elrod, V. A. Eos 76, OS154 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, S., Nightingale, P., Spokes, L. et al. Increased dimethyl sulphide concentrations in sea water from in situ iron enrichment. Nature 383, 513–517 (1996). https://doi.org/10.1038/383513a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383513a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing