Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of specific RXR heterodimers by an antagonist of RXR homodimers

Abstract

RETINOID X receptor (RXR) plays a central role in the regulation of many intracellular receptor signalling pathways1 and can mediate ligand-dependent transcription, acting as a homodimer or as a heterodimer1–6. Here we identify an antagonist towards RXR homodimers which also functions as an agonist when RXR is paired as a heterodimer to specific partners, including peroxi-some proliferator-activated receptor and retinoic acid receptor. This dimer-selective ligand confers differential interactions on the transcription machinery: the antagonist promotes association with TAF110 (TATA-binding protein (TBP)-associated factor 110) and the co-repressor SMRT7, but not with TBP, and these properties are distinct from pure RXR agonists. This unique class of RXR ligands will provide a means to control distinct target genes at the level of transcription and allow the development of retinoids with a new pharmacological action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mangelsdorf, D. J., Umesono, K. & Evans, R. in The Retinoids (eds Sporn, M. B., Roberts, A. B. & Goodman, D. S.) 319–349 (Adacemic, New York, 1994).

    Google Scholar 

  2. Forman, B. M., Umesono, K., Chen, J. & Evans, R. M. Cell 81, 541–550 (1995).

    Article  CAS  Google Scholar 

  3. Willy, P. J. et al. Genes Dev. 9, 1033–1045 (1995).

    Article  CAS  Google Scholar 

  4. Perlmann, T. & Jansson, L. Genes Dev. 9, 769–782 (1995).

    Article  CAS  Google Scholar 

  5. Kliewer, S. A., Umesono, K., Noonan, D. J., Heyman, R. A. & Evans, R. M. Nature 358, 771–774 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Mangelsdorf, D. J. et al. Cell 66, 555–561 (1991).

    Article  CAS  Google Scholar 

  7. Chen, J.-D. & Evans, R. M. Nature 377, 454–457 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Meyer, M. E. et al. EMBO J. 9, 3923–3932 (1990).

    Article  CAS  Google Scholar 

  9. Danielian, P. S. et al. Mol. Endocrinol. 7, 232–240 (1993).

    CAS  PubMed  Google Scholar 

  10. Kurokawa, R. et al. Nature 377, 451–457 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Kurokawa, R. et al. Nature 371, 528–531 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Fanjul, A. et al. Nature 372, 107–111 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Nagpal, S., Athanikar, J. & Chandraratna, R. A. J. Biol. Chem. 270, 923–927 (1995).

    Article  CAS  Google Scholar 

  14. Chen, J. Y. et al. EMBO J. 14, 1187–1197 (1995).

    Article  CAS  Google Scholar 

  15. Horlein, A. J. et al. Nature 377, 397–404 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Schulman, I. G., Chakravarti, D., Juguilon, H., Romo, A. & Evans, R. M. Proc. Natl Acad. Sci. USA 92, 8288–8292 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Canan-Koch, S. S. et al. J. Med. Chem. 39, 3229–3234 (1996).

    Article  CAS  Google Scholar 

  18. Boehm, M. F. et al. J. Med. Chem. 38, 3146–3155 (1995).

    Article  CAS  Google Scholar 

  19. Heyman, R. A. et al. Cell 68, 397–406 (1992).

    Article  CAS  Google Scholar 

  20. Levin, A. A. et al. Nature 355, 359–361 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Allegretto, E. A. et al. J. Biol. Chem. 268, 26625–26633 (1993).

    CAS  PubMed  Google Scholar 

  22. Boehm, M. F. et al. J. Med. Chem. 37, 408–414 (1994).

    Article  CAS  Google Scholar 

  23. Fields, S. & Song, O. K. Nature 340, 245–246 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Mukherjee, R., Jow, L., Noonan, D. & McDonnell, D. P. J. Steroid Mol. Biol. 51, 157–166 (1994).

    Article  CAS  Google Scholar 

  25. Rottman, J. N. et al. Mol. Cell. Biol. 11, 3814–3820 (1991).

    Article  CAS  Google Scholar 

  26. Roy, B., Taneja, R. & Chambon, P. Mol. Cell. Biol. 15, 6481–6487 (1995).

    Article  CAS  Google Scholar 

  27. Nagpal, S., Friant, S., Nakshatri, H. & Chambon, P. EMBO J. 12, 2349–2360 (1993).

    Article  CAS  Google Scholar 

  28. Lanotte, M. et al. Blood 77, 1080–1086 (1991).

    CAS  PubMed  Google Scholar 

  29. Renaud, J.-P. et al. Nature 378, 681–689 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Bourguet, W. et al. Nature 375, 377–382 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lala, D., Mukherjee, R., Schulman, I. et al. Activation of specific RXR heterodimers by an antagonist of RXR homodimers. Nature 383, 450–453 (1996). https://doi.org/10.1038/383450a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383450a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing