Letter | Published:

An RNA-export mediator with an essential nuclear export signal

Nature volume 383, pages 357360 (26 September 1996) | Download Citation

Subjects

Abstract

THE Rev protein of human immunodeficiency virus type 1 (HIV-1) mediates the translocation of viral messenger RNAs from the nucleus to the cytoplasm. In yeast, Rev can mediate the nuclear export of Rev response-element-containing RNAs1. The export of Rev itself proceeds through the nuclear pore complex and requires a nuclear export signal (NES)2,3 and interaction with a cellular cofactor, the protein Ripl (refs 1,4,5). Endogenous RNA export mediators that interact with Ripl and harbour NESs are thought to exist6,7 but have yet to be identified. Here we report the characterization of a new and essential yeast protein, Glel, which contains an NES and has a relative molecular mass of 62,000. Mutation of the NES in Glel prevents export of polyadenylated RNA from the nucleus. Glel interacts with Ripl and the nucleoporin Nup100 and is localized predominantly at nuclear pore complexes. These properties indicate that Glel is an RNA-export factor and that Rev may mediate viral RNA export by mimicking the function of Glel.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Cell 82, 495–506 (1995).

  2. 2.

    , , & Cell 82, 463–473 (1995).

  3. 3.

    , , , & Cell 82, 475–483 (1995).

  4. 4.

    , , & Cell 82, 485–494 (1995).

  5. 5.

    , & Nature 376, 530–533 (1995).

  6. 6.

    Cell 82, 341–344 (1995).

  7. 7.

    & Science 271, 1513–1518 (1996).

  8. 8.

    , & J. Cell Biol. 119, 705–723 (1992).

  9. 9.

    & J. Cell Biol. 125, 955–969 (1994).

  10. 10.

    , & Mol. Biol. Cell 6, 357–370 (1995).

  11. 11.

    et al. J. Cell Biol. (in the press).

  12. 12.

    , , , & J. Mol. Biol. 215, 403–410 (1990).

  13. 13.

    et al. Proc. Natl Acad. Sci. USA 93, 2936–2940 (1996).

  14. 14.

    & Genes Dev. 8, 1538–1547 (1994).

  15. 15.

    , , , & Mol. Cell. Biol. 12, 5640–5651 (1992).

  16. 16.

    , , & Proc. Natl Acad. Sci. USA 92, 6532–6536 (1995).

  17. 17.

    , & J. Cell Biol. 130, 265–274 (1995).

  18. 18.

    , , , & Nature 377, 246–248 (1995).

  19. 19.

    , , & Cell 58, 205–214 (1989).

  20. 20.

    & Nature 342, 714–716 (1989).

  21. 21.

    , , , & Nature 342, 816–819 (1989).

  22. 22.

    , & J. Virol. 65, 7051–7055 (1991).

  23. 23.

    & Cell 65, 241–248 (1991).

  24. 24.

    , , & Proc. Natl Acad. Sci. USA 88, 7734–7738 (1991).

  25. 25.

    , & J. Biol. Chem. 265, 2209–2215 (1990).

  26. 26.

    , & J. Cell Biol. 131, 1699–1713 (1995).

  27. 27.

    , , , & Nucleic Acids Res. 21, 3329–3330 (1993).

  28. 28.

    Mol. Cell. Biol. 16, 1832–1841 (1996).

  29. 29.

    , & Science 257, 68–72 (1992).

Download references

Author information

Affiliations

  1. Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, Missouri 63110, USA

    • Robert Murphy
    •  & Susan R. Wente

Authors

  1. Search for Robert Murphy in:

  2. Search for Susan R. Wente in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/383357a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.