Letter | Published:

The role of heterotrophic bacteria in iron-limited ocean ecosystems

Nature volume 383, pages 330332 (26 September 1996) | Download Citation

Subjects

Abstract

IRON availability limits phytoplankton growth in large areas of the world's oceans1–3 and may influence the strength of the biological carbon pump4,5. Very little is known of the iron requirements of oceanic heterotrophic bacteria, which constitute up to 50% of the total particulate organic carbon in open ocean waters6,7 and are important in carbon cycling as remineralizers of dissolved organic matter and hence producers of CO2 (ref. 8). Here we report that oceanic bacteria contain more iron per biomass than phytoplankton. In the subarctic Pacific, they constitute a large fraction of biogenic iron and account for 20–45% of biological iron uptake. Bacterial iron quotas in the field are similar to those of iron-deficient laboratory cultures, which exhibit reduced elec-tron transport, slow growth, and low carbon growth efficiency. Heterotrophic bacteria therefore play a major role in the biogeo-chemical cycling of iron. In situ iron limitation of heterotrophic metabolism may have profound effects on carbon flux in the ocean.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Nature 371, 123–129 (1994).

  2. 2.

    et al. Nature 373, 412–415 (1995).

  3. 3.

    & Nature 331, 341–343 (1988).

  4. 4.

    , & Limnol. Oceanogr. 39, 520–539 (1994).

  5. 5.

    , , , & Nature 379, 621–624 (1996).

  6. 6.

    , , & Mar. Ecol. Progr. Ser. 57, 207–217 (1989).

  7. 7.

    , , & Deep-Sea Res. 40, 967–988 (1993).

  8. 8.

    le B. Kiel. Meeresforsch. 5, 1–28 (1981).

  9. 9.

    et al. Biol. Oceanogr. 6, 443–461 (1988).

  10. 10.

    & Mar. Ecol. Prog. Ser. (in the press).

  11. 11.

    Limnol. Oceanogr. 36, 1755–1771 (1991).

  12. 12.

    , & Deep-Sea Res. 36, 649–680 (1989).

  13. 13.

    & Geochim. Cosmochim. Acta 37, 1639–1653 (1973).

  14. 14.

    , & Mar. Biol. 98, 287–298 (1988).

  15. 15.

    et al. Limnol. Oceanogr. 36, 1600–1615 (1991).

  16. 16.

    , , & Nature 382, 802–805 (1996).

  17. 17.

    , , & Nature 366, 455–548 (1993).

  18. 18.

    & Mar. Chem. 50, 117–138 (1995).

  19. 19.

    , & Limnol. Oceanogr. 28, 1182–1198 (1983).

  20. 20.

    , & Nature 351, 55–57 (1991).

  21. 21.

    , & , Growth of the Bacterial Cell (Sinauer, Sunderland, MA, 1983).

  22. 22.

    & J. Gen. Microbiol. 77, 339–349 (1973).

  23. 23.

    Mar. Ecol. Prog. Ser. 62, 47–54 (1990).

  24. 24.

    & Limnol. Oceanogr. 34, 1113–1120 (1989).

  25. 25.

    & Appl. Envir. Microbiol. 53, 1298–1303 (1987).

  26. 26.

    , & Prog. Oceanogr. 32, 57–99 (1993).

  27. 27.

    Mar. Ecol. Prog. Ser. 83, 251–262 (1992).

  28. 28.

    , , & Limnol. Oceanogr. 36, 1631–1649 (1991).

  29. 29.

    & le B. Oceanol. Acta 4, 351–358 (1981).

Download references

Author information

Author notes

    • Philippe D. Tortell

    Present address: Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA.

Affiliations

  1. Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada

    • Philippe D. Tortell
    • , Maria T. Maldonado
    •  & Nell M. Price

Authors

  1. Search for Philippe D. Tortell in:

  2. Search for Maria T. Maldonado in:

  3. Search for Nell M. Price in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/383330a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.