Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Minimal cost per twitch in rattlesnake tail muscle

Abstract

SOUND production is one of the most energetically costly activities in animals1. Minimizing contraction costs is one means of achieving the high activation rates necessary for sound production (20–550 Hz) (refs 1–3) without exceeding energy supplies. Rattlesnakes produce a sustained, high-frequency warning sound by extremely rapid contraction of their tailshaker muscles (20–90 Hz) (refs 4,5). The ATP cost per twitch is only 0.015 μmol ATP per g muscle per twitch during rattling, as measured by in vivo magnetic resonance. The reduced volume density of myofibre (32%) in tailshaker muscle is consistent with contraction cost being minimized (crossbridge cycling), in contrast to the contractile costs of vertebrate locomotory and asynchronous insect flight muscle. Thus tailshaker muscle is an example of sound-producing muscle designed for 'high frequency, minimal cost'. The high rates of rattling are achieved by minimizing contractile use of ATP, which reduces the cost per twitch to among the lowest found for striated muscle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Stevens, E. & Josephson, R. Physiol. Zool. 50, 31–42 (1977).

    Article  Google Scholar 

  2. 2

    Josephson, R. & Young, D. J. Exp. Biol. 118, 185–208 (1985).

    Google Scholar 

  3. 3

    Prestwich, K. Am. Zool. 34, 625–643 (1994).

    Article  Google Scholar 

  4. 4

    Schaeffer, P., Conley, K. & Lindstedt, S. J. Exp. Biol. 199.02, 351–358 (1996).

    Google Scholar 

  5. 5

    Chadwick, L. E. & Rahn, H. Science 119, 442–443 (1954).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Schultz, E., Clark, A., Suzuki, A. & Cassens, R. Tissue & Cell 12, 323–334 (1980).

    CAS  Article  Google Scholar 

  7. 7

    Adams, G., Foley, J. & Meyer, R. J. Appl. Physiol. 69, 968–972 (1990).

    CAS  Article  Google Scholar 

  8. 8

    Blei, M., Conley, K. & Kusmerick, M. J. Physiol. (Lond.) 465, 203–222 (1993).

    CAS  Article  Google Scholar 

  9. 9

    Foley, J. & Meyer, R. NMR Biomed. 6, 32–38 (1993).

    CAS  Article  Google Scholar 

  10. 10

    Tregear, R. in Handbook of Physiology, Skeletal Muscle (eds Peachey, L., Adrian, R. & Geiger, S.) 487–506 (Williams and Wilkinson, Baltimore, 1993).

    Google Scholar 

  11. 11

    Bartholomew, G. & Casey, T. J. Exp. Biol. 76, 11–25 (1978).

    Google Scholar 

  12. 12

    Casey, T. & Ellington, C. in Energy Transformations in Cells and Organisms (Proc. 10th Conf. Eur. Soc. Comp. Physiol. Biochem.) (eds Wieser, W. & Gnaiger, E.) 200–210 (Georg Thieme, Stuttgart, 1989).

    Google Scholar 

  13. 13

    Casey, T., May, M. & Morgan, K. J. Exp. Biol. 116, 271–289 (1985).

    Google Scholar 

  14. 14

    Dickinson, M. & Lighton, J. Science 268, 87–90 (1995).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Josephson, R. & Stevenson, R. J. Physiol. (Lond.) 442, 413–429 (1991).

    CAS  Article  Google Scholar 

  16. 16

    Rall, J. Exercise Sport Sci. Rev. 13, 33–74 (1985).

    CAS  Google Scholar 

  17. 17

    Hoppeler, H., Kayar, S. R., Claassen, H., Uhlmann, E. & Karas, R. H. Respir. Physiol. 69, 27–46 (1987).

    Article  Google Scholar 

  18. 18

    Ellington, C. J. Exp. Biol. 160, 71–91 (1991).

    Google Scholar 

  19. 19

    Josephson, R. J. Exp. Biol. 117, 357–368 (1985).

    Google Scholar 

  20. 20

    Gilmour, K. & Ellington, C. J. Exp. Biol. 183, 101–113 (1993).

    Google Scholar 

  21. 21

    Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T. & White, D. C. S. Nature 378, 209–212 (1995).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Josephson, R. & Young, D. J. Exp. Biol. 91, 219–237 (1981).

    Google Scholar 

  23. 23

    Stokes, D., Josephson, R. & Price, R. J. Exp. Zool. 194, 379–408 (1975).

    CAS  Article  Google Scholar 

  24. 24

    Kushmerick, M. J. et al. J. Biol. Chem. 261, 14420–14429 (1986).

    CAS  PubMed  Google Scholar 

  25. 25

    Teague, W. & Dobson, G. J. Biol. Chem. 267, 14084–14093 (1992).

    CAS  PubMed  Google Scholar 

  26. 26

    Heineman, F. & Balaban, R. J. Clin. Invest. 85, 843–852 (1990).

    CAS  Article  Google Scholar 

  27. 27

    Schwerzmann, K., Hoppeler, H., Kayar, S. R. & Weibel, E. R. Proc. Natl Acad. Sci. USA 86, 1583–1587 (1989).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Kusmerick, M. J. & Paul, R. J. J. Physiol. (Lond.) 254, 711–727 (1976).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Conley, K., Lindstedt, S. Minimal cost per twitch in rattlesnake tail muscle. Nature 383, 71–72 (1996). https://doi.org/10.1038/383071a0

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing