Letter | Published:

Chlorin accumulation rate as a proxy for Quaternary marine primary productivity

Nature volume 383, pages 6365 (05 September 1996) | Download Citation

Subjects

Abstract

A KNOWLEDGE of past changes in the biological productivity of the oceans is important for understanding the interactions between carbon cycling and climate. Phytoplankton productivity in today's oceans can be estimated from the concentrations of chlorophyll in sea water1, but chlorophyll is not preserved in the sediments. Existing proxies for past algal productivity do not represent total productivity; for example, biogenic opal2 reflects the contribution of only part of the phytoplankton community, and the organic carbon record can be subject to contamination from terrestrial inputs2,3. Although chlorins, the pigment-transformation products of chlorophyll, are widespread in Quaternary marine sediments, their potential as proxy measures of past variations in primary productivity has not been convincingly demonstrated. Here we report a high-resolution molecular stratigraphic record of chlorin concentrations over the past 350,000 years in a sediment core from the subtropical Atlantic continental margin. Maxima in the chlorin accumulation rate coincide with significant peaks in the accumulation rates of biogenic opal (at the end of glacial terminations) and organic carbon (between terminations). These results suggest that chlorins, unlike other proxies, can serve as a measure of total primary productivity variations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & J. Plankton Res. 17, 1245–1271 (1995).

  2. 2.

    et al. Proc. ODP Sci. Res. 108, 361–386 (1989).

  3. 3.

    , , , & Deep-Sea Res. 40, 1087–1121 (1993).

  4. 4.

    et al. ODP Init. Rep. (A) 108, 105–219 (1988).

  5. 5.

    & Palaeoceanography 5, 1041–1055 (1990).

  6. 6.

    , & Phil. Trans. R. Soc. Lond. B 348, 91–201 (1995).

  7. 7.

    et al. in Upwelling Systems: Evolution since the Early Miocene (eds Summerhayes, C. P., Prell, W. L. & Emeis, K. C.) 411–728 (Geol. Soc. Spec. Pub. No. 64, London, 1992).

  8. 8.

    et al. Nature 356, 423–426 (1992).

  9. 9.

    & Org. Geochem. 23, 853–856 (1995).

  10. 10.

    , & Proc. ODP Sci. Res. 108, 241–278 (1989).

  11. 11.

    & Proc. ODP Sci. Res. 108, 167–185 (1989).

  12. 12.

    , & Palaeogeogr. Palaeoclimatol. Palaeoecol. 103, 57–65 (1993).

  13. 13.

    Mar. Geol. 72, 305–323 (1986).

  14. 14.

    & Mar. Micropalaeontol. 10, 165–188 (1986).

  15. 15.

    & in Organic Matter: Productivity, Accumulation and Preservation in Recent and Ancient Sediments 231–263 (Columbia Univ. Press, New York, 1992).

  16. 16.

    et al. Palaeoceanography 9, 209–267 (1994).

  17. 17.

    Quat. Res. 29, 142–152 (1988).

  18. 18.

    et al. Phil. Trans. R. Soc. Lond. B 348, 255–264 (1995).

  19. 19.

    , , & Proc. ODP Sci. Res. 108, 93–112 (1989).

  20. 20.

    Rev. Palaeobot. Palynol. 55, 101–140 (1988).

  21. 21.

    Palaeoecol. Afr. 12, 365–377 (1980).

  22. 22.

    et al. in Geology of the NW African Continental Margin (eds Von Rad, U., Hinz, K., Sarnthein, M. & Siebold, E.) 545–604 (Springer, Berlin, 1982).

  23. 23.

    thesis, Univ. Kiel (1991).

  24. 24.

    Proc. ODP Sci. Res. 108, 149–156 (1989).

  25. 25.

    , , & Proc. ODP Sci. Res. 108, 387–394 (1989).

  26. 26.

    Proc. ODP Sci. Res. 108, 35–70 (1989).

  27. 27.

    Nature 350, 53–55 (1991).

  28. 28.

    , & Proc. ODP Sci. Res. 108, 351–359 (1989).

  29. 29.

    & Earth Planet Sci. Letts 111, 369–382 (1992).

  30. 30.

    , , , & Palaeoceanography 10, 661–675 (1995).

  31. 31.

    , & Geol. Soc. Am. Mem. 143, (1975).

Download references

Author information

Affiliations

  1. Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 ITS, UK

    • P. G. Harris
    • , M. Zhao
    • , A. Rosell-Melé
    •  & J. R. Maxwell
  2. Geomar Forschungszentrum für Marine Geowissenschaften, Wischoffstrasse 1-3, D-24148 Kiel, Germany

    • R. Tiedemann
  3. Geologisch-Paläontologisches Institut, Universität zu Kiel, Olshausenstrasse 40, D-24118 Kiel, Germany

    • M. Sarnthein
  4. Present address: Biomedical Mass Spectrometry Unit, Wallace Wurth School of Medicine, University of New South Wales, Sydney 2052, Australia.

    • P. G. Harris

Authors

  1. Search for P. G. Harris in:

  2. Search for M. Zhao in:

  3. Search for A. Rosell-Melé in:

  4. Search for R. Tiedemann in:

  5. Search for M. Sarnthein in:

  6. Search for J. R. Maxwell in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/383063a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.