Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tracking the evolution of warning signals

Abstract

EVOLUTIONARYstudies are hampered by a lack of experimental ways in which to test past events such as the origination of aposematism1–7, whereby unpalatable or poisonous prey signal their unprofitability, often by being warningly coloured. Inexperienced predators do learn to avoid unpalatable prey as a result of such signals8–10, but in addition there may be an inherited cautiousness about attacking when common or conspicuous warning signals are evident11–16. As current predators are not naive in the evolutionary sense, it is still not resolved3–7,17,18 whether aposematism originated only in aggregations of prey19,20 or among solitary prey as well21–23. Here we explore this controversy in evolutionarily naive predators by creating a novel world with warning signals not found in the environment. Initially, the aggregation of prey favoured the warning signals supporting Fisher's view24 of kin aggregations as the evolutionary starting point of aposematism. However, once predators had experienced warning signals, pre-existing avoidance seemed to facilitate evolution of Müllerian mimicry complexes25 with similar types of signals even among solitary prey.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Poulton, E. B. The Colours of Animals: Their Meaning and Use (Kegan Paul, Trench, Trubner, London, 1890).

    Google Scholar 

  2. Edmunds, M. Defence in Animals: A Survey of Anti-predator Defences (Longman, Harlow, Essex, 1974).

    Google Scholar 

  3. Guilford, T. Am. Nat. 131, S7–S21 (1988).

    Article  Google Scholar 

  4. Guilford, T. in Insect Defence: Adaptive Mechanisms and Strategies of Prey and Predators (eds Evans, D. L. & Schmidt, J. O.) 23–61 (State Univ. of New York Press, NY, 1990).

    Google Scholar 

  5. Mallet, J. & Singer, M. C. Biol. J. Linn. Soc. 32, 337–350 (1987).

    Article  Google Scholar 

  6. Endler, J. A. Phil. Trans. R. Soc. Lond. B 319, 505–523 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Endler, J. A. in Behavioural Ecology: An Evolutionary Approach 3rd edn (eds Krebs, J. R. & Davies, N. B.) 169–196 (Blackwell, Oxford, 1991).

    Google Scholar 

  8. Gittleman, J. L. & Harvey, P. H. Nature 286, 149–150 (1980).

    Article  ADS  Google Scholar 

  9. Roper, T. J. & Wistow, R. Q. J. exp. Psychol. 38, 141–149 (1986).

    Google Scholar 

  10. Roper, T. J. & Redston, S. Anim. Behav. 35, 739–747 (1987).

    Article  Google Scholar 

  11. Rubinoff, I. & Kropach, C. Nature 228, 1288–1290 (1970).

    Article  ADS  CAS  Google Scholar 

  12. Smith, S. M. Science 187, 759–760 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Smith, S. M. Nature 265, 535–536 (1977).

    Article  ADS  Google Scholar 

  14. Sillén-Tullberg, B. Oecologia 67, 411–415 (1985).

    Article  ADS  Google Scholar 

  15. Wiklund, C. & Järvi, T. Evolution 36, 998–1002 (1982).

    Article  Google Scholar 

  16. Schuler, W. & Hesse, E. Behavl Ecol. Sociobiol. 16, 249–255 (1985).

    Article  Google Scholar 

  17. Malcolm, I. S. B. Trends Ecol. Evol. 5, 57–62 (1990).

    Article  CAS  Google Scholar 

  18. Guilford, T. Oikos 45, 31–36 (1985).

    Article  Google Scholar 

  19. Harvey, P. H. & Paxton, R. J. Oikos 37, 391–393 (1981).

    Article  Google Scholar 

  20. Harvey, P. H., Bull, J. J., Pemberton, M. & Paxton, R. J. Am. Nat. 119, 710–719 (1982).

    Article  Google Scholar 

  21. Järvi, T., Sillén-Tullberg, B. & Wiklund, C. Oikos 36, 267–272 (1981).

    Article  Google Scholar 

  22. Sillén-Tullberg, B. & Bryant, E. H. Evolution 37, 993–1000 (1983).

    Article  Google Scholar 

  23. Sillén-Tullberg, B. Evolution 42, 293–305 (1988).

    Article  Google Scholar 

  24. Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon, Oxford, 1930).

    Book  Google Scholar 

  25. Müller, F. Proc. ent. Soc. Lond. 1879, 20–29 (1879).

    Google Scholar 

  26. Gagliardo, A. & Guilford, T. Proc. R. Soc. Lond. B 251, 69–74 (1993).

    Article  ADS  Google Scholar 

  27. Sillén-Tullberg, B. Anim. Behav. 40, 856–860 (1990).

    Article  Google Scholar 

  28. Stamp, N. E. Am. Nat. 115, 367–380 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alatalo, R., Mappes, J. Tracking the evolution of warning signals. Nature 382, 708–710 (1996). https://doi.org/10.1038/382708a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382708a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing