Reward expectancy in primate prefrental neurons

Abstract

THE prefrontal cortex is important in the organization of goal-directed behaviour1–3. When animals are trained to work for a particular goal or reward4–7, reward 'expectancy' is processed by prefrontal neurons. Recent studies of the prefrontal cortex have concentrated on the role of working memory in the control of behaviour8–10. In spatial delayed-response tasks, neurons in the prefrontal cortex show activity changes during the delay period between presentation of the cue and the reward11–15, with some of the neurons being spatially specific (that is, responses vary with the cue position)13–15. Here I report that the delay activity in prefrontal neurons is dependent also on the particular reward received for the behavioural response, and to the way the reward is given. It seems that the prefrontal cortex may monitor the outcome of goal-directed behaviour.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Luria, A. R. Higher Cortical Functions in Man 2nd edn (Basic Books, New York, 1980).

  2. 2

    Shallice, T. From Neuropsychology to Mental Structure (Cambridge Univ. Press, New York, 1988).

  3. 3

    Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neurophysiology of the Frontal Lobe 2nd edn (Raven, New York, 1989).

  4. 4

    Tinklepaugh, O. L. J. comp. Psychol. 8, 197–236 (1928).

  5. 5

    Tolman, E. C. Purposive Behavior in Animals and Men (Century, New York, 1932).

  6. 6

    Peterson, G. B. in Animal Cognition (eds Roitblat, H. L., Bever, T. G. & Terrace, H. S.) 135–148 (Lawrence Erlbaum Associates, Hillsdale, 1984).

  7. 7

    Chatlosh, D. L. & Wasserman, E. A. in Learning and Memory (eds Germezano, I. & Wasserman, E. A.) 61–79 (Lawrence Erlbaum Associates, Hillsdale, 1992).

  8. 8

    Goldmanm-Rakic, P. S. in Handbook of Physiology Vol. 5 The Nervous System, Higher Functions of the Brain Part 1 (ed. Plum, F.) 373–417 (Am. Physiol. Soc., Bethesda, 1987).

  9. 9

    Petrides, M., Alivisatos, B., Evans, A. C. & Meyer, E. Proc. natn. Acad. Sci. U.S.A. 90, 873–877 (1993).

  10. 10

    McCarthy, G. et al. Proc. natn. Acad. Sci. U.S.A. 91, 8690–8694 (1994).

  11. 11

    Kubota, K. & Niki, H. J. Neurophysiol. 34, 337–347 (1971).

  12. 12

    Fuster, J. M. J. Neurophysiol. 36, 61–78 (1973).

  13. 13

    Niki, H. Brain Res. 70, 346–349 (1974).

  14. 14

    Niki, H. & Watanabe, M. Brain Res. 105, 79–88 (1976).

  15. 15

    Funahashi, S., Bruce, C. J. & Goldman-Rakic, P.S. J. Neurophysiol. 61, 331–349 (1989).

  16. 16

    Niki, H. & Watanabe, M. Brain Res. 171, 213–224 (1979).

  17. 17

    Sakagami, M. & Niki, H. Expl Brain Res. 97, 423–436 (1994).

  18. 18

    Hikosaka, O., Sakamoto, M. & Usui, S. J. Neurophysiol. 61, 814–832 (1989).

  19. 19

    Apicella, P., Scarnati, E., Ljungberg, T. & Schultz, W. J. Neurophysiol. 68, 945–960 (1992).

  20. 20

    Schultz, W., Apicella, P., Scarnati, E. & Ljungberg, T. J. Neurosci. 12, 4595–4610 (1992).

  21. 21

    Watanabe, M. Expl Brain Res. 80, 296–309 (1990).

  22. 22

    Watanabe, M. Expl. Brain Res. 89, 233–247 (1992).

  23. 23

    Watanabe, M. Neurosci. Lett. 101, 113–117 (1989).

  24. 24

    Sirigu, A. et al. Cortex 31, 301–316 (1995).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.