Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A DNA-based method for rationally assembling nanoparticles into macroscopic materials


COLLOIDAL particles of metals and semiconductors have potentially useful optical, optoelectronic and material properties1–4 that derive from their small (nanoscopic) size. These properties might lead to applications including chemical sensors, spectro-scopic enhancers, quantum dot and nanostructure fabrication, and microimaging methods2–4. A great deal of control can now be exercised over the chemical composition, size and polydis-persity1,2 of colloidal particles, and many methods have been developed for assembling them into useful aggregates and materials. Here we describe a method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates. The method involves attaching to the surfaces of two batches of 13-nm gold particles non-complementary DNA oligo-nucleotides capped with thiol groups, which bind to gold. When we add to the solution an oligonucleotide duplex with 'sticky ends' that are complementary to the two grafted sequences, the nanoparticles self-assemble into aggregates. This assembly process can be reversed by thermal denaturation. This strategy should now make it possible to tailor the optical, electronic and structural properties of the colloidal aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Schmid, G. (ed.) Clusters and Colloids (VCH, Weinheim, 1994).

  2. 2

    Hayat, M. A. (ed.) Colloidal Gold: Principles, Methods, and Applications (Academic, San Diego, 1991).

  3. 3

    Bassell, G. J., Powers, C. M., Taneja, K. L. & Singer, R. H. J. Cell Biol. 126, 863–876 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Creighton, J. A., Blatchford, C. G. & Albrecht, M. G. J. chem. Soc. Faraday II 75, 790–798 (1979).

    CAS  Article  Google Scholar 

  5. 5

    Brust, M., Bethell, D., Schiffrin, D. J. & Kiely, C. J. Adv. Mater. 7, 795–797 (1995).

    CAS  Article  Google Scholar 

  6. 6

    Dubois, L. H. & Nuzzo, R. G. A. Rev. phys. Chem. 43, 437–463 (1992).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Bain, C. D. & Whitesides, G. M. Angew. Chem. int. Edn. engl. 28, 506–512 (1989).

    Article  Google Scholar 

  8. 8

    Shekhtman, E. M., Wasserman, S. A., Cozzarelli, N. R. & Solomon, M. J. New J. Chem. 17, 757–763 (1993).

    CAS  Google Scholar 

  9. 9

    Shaw, S. Y. & Wang, J. C. Science 260, 533–536 (1993).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Herrlein, M. K., Nelson, J. S. & Letsinger, R. L. J. Am. Chem. Soc. 117, 10151–10152 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Chen, J. H. & Seeman, N. C. Nature 350, 631–633 (1991).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Smith, F. W. & Feigon, J. Nature 356, 164–168 (1992).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Wang, K. Y., McCurdy, S., Shea, R. G., Swaminathan, S. & Bolton, P. H. Biochemistry 32, 1899–1904 (1993).

    CAS  Article  Google Scholar 

  14. 14

    Chen, L. Q., Cai, L., Zhang, X. H. & Rich, A. Biochemistry 33, 13540–13546 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Marsh, T. C., Vesenka, J. & Henderson, E. Nucleic Acids Res. 23, 696–700 (1995).

    CAS  Article  Google Scholar 

  16. 16

    Mirkin, S. M. & Frankkamenetskii, M. D. A. Rev. Biophys. biomolec. Struct. 23, 541–576 (1994).

    CAS  Article  Google Scholar 

  17. 17

    Wells, R. D. J. biol. Chem. 263, 1095–1098 (1988).

    CAS  Google Scholar 

  18. 18

    Wang, Y., Mueller, J. E., Kemper, B. & Seeman, N. C. Biochemistry 30, 5667–5674 (1991).

    CAS  Article  Google Scholar 

  19. 19

    Seeman, N. C. et al. New J. Chem. 17, 739–755 (1993).

    CAS  Google Scholar 

  20. 20

    Grabar, K. C., Freeman, R. G., Hommer, M. B. & Natan, M. J. Analyt. Chem. 67, 735–743 (1995).

    CAS  Article  Google Scholar 

  21. 21

    Mucic, R. C., Herrlein, M. K., Mirkin, C. A. & Letsinger, R. L. J. chem. Soc., chem. Commun. 555–557 (1996).

  22. 22

    Linnert, T., Mulvaney, P. & Henglein, A. J. phys. Chem. 97, 679–682 (1993).

    CAS  Article  Google Scholar 

  23. 23

    Herron, N., Wang, Y. & Eckert, H. J. Am. chem. Soc. 112, 1322–1326 (1990).

    CAS  Article  Google Scholar 

  24. 24

    Colvin, V. L., Goldstein, A. N. & Alivisatos, A. P. J. Am. chem. Soc. 114, 5221–5230 (1992).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mirkin, C., Letsinger, R., Mucic, R. et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing