Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Autocatalytic processing of the 20S proteasome

Abstract

THE Ntn (N-terminal nucleophile) hydrolases are enzymes with an unusual four-layer α+β fold1–5. The amino-terminal residue (cysteine, serine or threonine) of the mature protein is the catalytic nucleophile6–10, and its side chain is activated for nucleophilic attack by transfer of its proton to the free N terminus2, although other active-site residues may also be involved4,8. The four currently known Ntn hydrolases (glutamine PRPP amidotransferase1,6, penicillin acylase2,7, the 20S proteasome3,8,9 and aspartylglucosaminidase4,10) are encoded as inactive precursors, and are activated by cleavage of the peptide bond preceding the catalytic residue. It has been suggested that auto-catalytic processing is a common feature of Ntn hydrolases, and proceeds by an intramolecular mechanism determined by their common fold5. Here we show that propeptide processing in the proteasome from Thermoplasma acidophilum is indeed autocatalytic, but is probably intermolecular. Processing is not required for assembly, is largely unaffected by propeptide length and sequence, and occurs before β-subunit folding is completed. Although serine is an acceptable active-site nucleophile for proteolysis, and cysteine for processing, only threonine is fully functional in both. This explains why threonine is universally conserved in active proteasome subunits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, J. L. et al. Science 264, 1427–1433 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Duggleby, H. J. et al. Nature 373, 264–268 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Löwe, J. et al. Science 268, 533–539 (1995).

    Article  ADS  Google Scholar 

  4. Oinonen, C. et al. Nature struct. Biol. 2, 1102–1108 (1995).

    Article  CAS  Google Scholar 

  5. Brannigan, J. E. et al. Nature 378, 416–419 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Souciet, J.-L., Hermodson, M. A. & Zalkin, H. J. biol. Chem. 263, 3323–3327 (1988).

    CAS  PubMed  Google Scholar 

  7. Choi, K. S., Kim, J. A. & Kang, H. S. J. Bact. 174, 6270–6276 (1992).

    Article  CAS  Google Scholar 

  8. Seemüller, E. et al. Science 268, 579–582 (1995).

    Article  ADS  Google Scholar 

  9. Fenteany, G. et al. Science 268, 726–731 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Fisher, K. J. et al. FEBS Lett. 323, 271–275 (1993).

    Article  CAS  Google Scholar 

  11. Lupas, A., Koster, A. J. & Baumeister, W. Enzyme Prot. 47, 252–273 (1993).

    Article  CAS  Google Scholar 

  12. Peters, J.-M. Trends biochem. Sci. 19, 377–382 (1994).

    Article  CAS  Google Scholar 

  13. Pühler, G. et al. EMBO J. 11, 1607–1616 (1992).

    Article  Google Scholar 

  14. Hegerl, R. et al. FEBS Lett. 283, 117–121 (1991).

    Article  CAS  Google Scholar 

  15. Zwickl, P. et al. Biochemistry 31, 964–972 (1992).

    Article  CAS  Google Scholar 

  16. Zwickl, P., Kleinz, J. & Baumeister, W. Nature struct. Biol. 1, 765–770 (1994).

    Article  CAS  Google Scholar 

  17. Grziwa, A. et al. FEBS Lett. 290, 186–190 (1991).

    Article  CAS  Google Scholar 

  18. Kopp, F., Dahlman, B. & Hendil, K. J. molec. Biol. 229, 14–19 (1993).

    Article  CAS  Google Scholar 

  19. Schauer, T. M. et al. J. struct. Biol. 111, 135–147 (1993).

    Article  CAS  Google Scholar 

  20. Tamura, A. et al. Curr. Biol. 5, 766–774 (1995).

    Article  CAS  Google Scholar 

  21. Lilley, K. A., Davison, M. D. & Rivett, A. J. FEBS Lett. 262, 327–329 (1990).

    Article  CAS  Google Scholar 

  22. Lee, L. W. et al. Biochim. biophys. Acta 1037, 178–185 (1990).

    Article  CAS  Google Scholar 

  23. Chen, P. & Hochstrasser, M. EMBO J. 14, 2620–2630 (1995).

    Article  CAS  Google Scholar 

  24. Hilt, W. & Wolf, D. H. Molec. Biol. Rep. 21, 3–10 (1995).

    Article  CAS  Google Scholar 

  25. Tanaka, K. Molec. Biol. Rep. 21, 21–26 (1995).

    Article  CAS  Google Scholar 

  26. Dahlmann, B. et al. FEBS Lett. 251, 125–131 (1989).

    Article  CAS  Google Scholar 

  27. Grziwa, A. et al. Eur. J. Biochem. 233, 1061–1067 (1994).

    Article  Google Scholar 

  28. Guan, C. et al. J. biol. Chem. 271, 1732–1737 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seemüller, E., Lupas, A. & Baumeister, W. Autocatalytic processing of the 20S proteasome. Nature 382, 468–470 (1996). https://doi.org/10.1038/382468a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382468a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing