Using antibodies to perturb the coordination sphere of a transition metal complex

Abstract

METAL ions in the active sites of many metalloenzymes exhibit distinctive spectral and chemical features which are different from those of small inorganic complexes1,2. These features are the result of the unusual geometric and electronic constraints that are imposed on the metal ion within the protein environment3. Much effort has been invested to try to mimic this feature of metalloenzymes in synthetic systems, but this remains a formidable task. Here we show that one of the key lessons learned from the science of catalytic antibodies—that binding energy can be converted into chemical energy4—can be exploited to 'fine-tune' the physicochemical properties of a metal complex. We show that an antibody's binding site can reversibly perturb the coordination geometry of a metal ion, and can stabilize a high-energy coordinated species5. Specifically, antibodies designed to bind the organosilicon compound 1 (Fig. 1) also bind the geometrically similar Cu(I) complex 2. However, the antibody binds a slightly compressed form of 2, which is closer in size to 1. This distortion is manifested by a spectral shift—an 'immunochromic' effect.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Vallee, B. L. & Williams, R. J. P. Proc. natn. Acad. Sci. U.S.A. 59, 498–505 (1968).

  2. 2

    Williams, R. J. P. Eur. J. Biochem. 234, 363–381 (1995).

  3. 3

    Solomon, E. I. & Lowery, M. D. Science 259, 1575–1581 (1993).

  4. 4

    Schultz, P. G. & Lerner, R. A. Science 269, 1835–1842 (1995).

  5. 5

    Shokat, K. M., Leumann, C. J., Sugasawara, R. & Schultz, P. G. Angew. Chem. int. Edn engl. 27, 1172–1174 (1988).

  6. 6

    Nabeshima, T., Inaba, T., Furukawa, N., Hosoya, T. & Yano, Y. Inorg. Chem. 32, 1407–1416 (1993).

  7. 7

    Kitagawa, S. & Munakata, M. Inorg. Chem. 20, 2261–2267 (1981).

  8. 8

    Kohler, G. & Milstein, C. Nature 256, 495–497 (1975).

  9. 9

    Williams, R. J. P. J. chem. Soc. 137–145 (1955).

  10. 10

    Palmer, R. A. & Piper, T. S. Inorg. Chem. 5, 864–878 (1966).

  11. 11

    Shabat, D., Itzhaky, H., Reymond, J.-L. & Keinan, E. Nature 374, 143–146 (1995).

  12. 12

    Lewis, C. T., Krämer, T., Robinson, S. & Hilvert, D. Science 253, 1019–1022 (1991).

  13. 13

    Lewis, C. T., Paneth, P., O'Leary, M. H. & Hilvert, D. J. Am. chem. Soc. 115, 1410–1413 (1993).

  14. 14

    Keinan, E. et al. Inorg. Chem. 31, 5433–5438 (1992).

  15. 15

    Zeigler, T. Can. J. Chem. 73, 743–761 (1995).

  16. 16

    Rosa, A. & Baerends, E. J. Inorg. Chem. 33, 584–595 (1994).

  17. 17

    Noodleman, L. & Baerends, E. J. J. Am. chem. Soc. 106, 2316–2327 (1984).

  18. 18

    Jones, D. H., Hinman, A. S. & Ziegler, T. Inorg. Chem. 32, 2092–2095 (1993).

  19. 19

    Steward, M. W. & Steensgaard, J. in Antibody Affinity: Thermodynamic Aspects and Biological Significance 76–77 (CRC Press, Roca Raton, Florida, 1983).

  20. 20

    Karlin, K. D. & Yandell, J. K. Inorg. Chem. 23, 1184–1188 (1984).

  21. 21

    Hathaway, B. J. in Comprehensive Coordination Chemistry Vol. 5 (ed. Wilkinson, G.) 533–774 (Pergamon, New York, 1987).

  22. 22

    Johnson, J. E., Beineke, T. A. & Jacobson, R. A. J. chem. Soc. (A) 1371–1374 (1971).

  23. 23

    Foley, J., Tyagi, S. & Hathaway, B. J. J. chem. Soc. Dalton Trans. 1, 1–5 (1994).

  24. 24

    Bard, A. J. (ed.) in Encyclopedia of Electrochemistry of the Elements IX A 172–211 (Dekker, New York, 1983).

  25. 25

    Vosko, S. H., Wilk, L. & Nusair, M. Can. J. Phys. 58, 1200–1211 (1980).

  26. 26

    Becke, A. D. J. chem. Phys. 84, 4524–4529 (1986).

  27. 27

    Perdew, J. P. Phys. Rev. B33, 8822–8824 (1986).

  28. 28

    te Velde, G. & Baerends, E. J. J. comput. Phys. 99, 84–98 (1992).

  29. 29

    Ziegler, T., Rauk, A. & Baerends, E. J. Theor. chim. Acta 43, 261–273 (1977).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghosh, P., Shabat, D., Kumar, S. et al. Using antibodies to perturb the coordination sphere of a transition metal complex. Nature 382, 339–341 (1996). https://doi.org/10.1038/382339a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.