Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of magnetically induced transverse diffusion of light

Abstract

PHOTONS and electrons, despite their very different nature, show many similarities in their behaviour. Several photonic counterparts of established electronic phenomena—such as photonic energy bands1, weak localization2–4, and the quantization of5 (and fluctuations in6–8) optical transmission—have now been observed. These similarities originate in the wave-like character of both photons and electrons. But unlike photons, electrons are also charged, and thus experience the Lorentz force in a magnetic field. This force leads to the well known Hall effect, in which the application of a magnetic field to an electron-transporting medium generates a new current (or voltage) perpendicular to the direction of both the original current and the applied magnetic field. Despite the absence of photonic charge, one of us has predicted9 that the propagation of light through a disordered, scattering medium should be similarly affected by a magnetic field, although the origin of the effect is very different. Here we report the experimental confirmation of this phenomenon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yablonovitch, E. in Analogies in Optics and Micro Electronics Ch. 8 (eds Van Haeringen, W. & Lenstra, D.) 117–134 (Kluwer, Dordrecht, 1990).

    Book  Google Scholar 

  2. Van Albada, M. P. & Lagendijk, A. Phys. Rev. Lett. 55, 2692–2695 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Wolf, P. E. & Maret, G. Phys. Rev. Lett. 55, 2696–2699 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Erbacher, F., Lenke, R. & Maret, G. Europhys. Lett. 21, 551–556 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Montie, E. A., Cosman, E. C., ‘t Hooft, G. W., Van der Mark, M. B. & Beenakker C. W. J. Nature 350, 594–595 (1991).

    Article  ADS  Google Scholar 

  6. Garcia, G. & Genack, A. Z. Phys. Rev. Lett. 63, 1678–1681 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Van Albada, M. P., De Boer, J. F. & Lagendijk, A. Phys. Rev. Lett. 64, 2787–2790 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Berkovits, R. & Feng, S. Phys. Rep. 238, 135–172 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Van Tiggelen, B. A. Phys. Rev. Lett. 75, 422–424 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. P. Electrodynamics of Continuous Media Sect. 97 (Pergamon, Oxford, 1984).

    Google Scholar 

  11. Darsht, M. Ya., Zhirgalova, I. V., Zel'dovich, B. Ya. & Kundikova, N. D. JETP Lett. 59, 763–765 (1994).

    ADS  Google Scholar 

  12. Kagan, Yu. & Maksimov, L. JETP 14, 604–610 (1962).

    Google Scholar 

  13. Korving, J., Hulsman, H., Knaap, H. F. P. & Beenakker, J. J. M. Phys. Lett. 21, 5–6 (1966).

    Article  ADS  CAS  Google Scholar 

  14. Hermans, L. J. F., Fortuin, P. H., Knaap, H. F. P. & Beenakker, J. J. M. Phys. Lett. 25A, 81–82 (1967).

    Article  ADS  Google Scholar 

  15. Mazur, E., Hijnen, H. J. M., Hermans, L. J. F. & Beenakker, J. J. M. Physica A123, 412–427 (1984).

    Article  Google Scholar 

  16. Crank, J. The Mathematics of Diffusion (Clarendon, Oxford, 1990).

    MATH  Google Scholar 

  17. Leycuras, C., LeGall, H., Guillot, M. & Marchand, A. J. appl. Phys. 55, 2161–2163 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rikken, G., van Tiggelen, B. Observation of magnetically induced transverse diffusion of light. Nature 381, 54–55 (1996). https://doi.org/10.1038/381054a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/381054a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing