Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Semiconducting superlattices templated by molecular assemblies

Abstract

ORGANIC-INORGANIC nanostructured composites provide a rich source of new materials1–14 for a host of technological applications. For example, the incorporation of organic molecules in an inorganic lattice can toughen an otherwise brittle material15–17, or be used to tailor its electronic properties14, and cooperative interactions between organic and inorganic molecules are being used to generate a range of porous materials for separation and catalytic technologies4–10. Here we describe the growth of stable semiconductor–organic superlattices based on cadmium sulphide and cadmium selenide. The template for the structures is provided by a liquid-crystalline phase formed from non-ionic organic amphiphiles, water and precursor ions for the inorganic semiconductor. Precipitation of the organic–inorganic solid takes place within the ordered environment of the mesophase, and both the symmetry and long-range order of the liquid crystal are preserved. We anticipate that materials of this type can be tailored, through the electronic properties of the organic amphiphiles, for photosynthetic and photocatalytic applications.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Archibald, D. D. & Mann, S. Nature 364, 430–433 (1993).

    ADS  CAS  Article  Google Scholar 

  2. Meldrum, F. C., Wade, V. J., Nimmo, D. L., Heywood, B. R. & Mann, S. Nature 349, 684–687 (1991).

    ADS  CAS  Article  Google Scholar 

  3. Meldrum, F. C., Heywood, B. R. & Mann, S. Science 257, 522–523 (1992).

    ADS  CAS  Article  Google Scholar 

  4. Burkett, S. L. & Davis, M. E. Chem. Mater. 7, 920–928 (1995).

    CAS  Article  Google Scholar 

  5. Szostak, R. Handbook of Molecular Sieves (Van Nostrand Reinhold, New York, 1992).

    Google Scholar 

  6. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Nature 359, 710–712 (1992).

    ADS  CAS  Article  Google Scholar 

  7. Beck, J. S. et al. Chem. Mater. 6, 1816–1821 (1994).

    CAS  Article  Google Scholar 

  8. Monnier, A. et al. Science 261, 1299–1303 (1993).

    ADS  CAS  Article  Google Scholar 

  9. Huo, Q. et al. Nature 368, 317–321 (1994).

    ADS  CAS  Article  Google Scholar 

  10. Firouzi, A. et al. Science 267, 1138–1143 (1995).

    ADS  CAS  Article  Google Scholar 

  11. Fribreg, S. E. & Wang, J. J. Dispers. Sci. Technol. 12, 387–402 (1991).

    Article  Google Scholar 

  12. Walsh, D., Hopwood, J. D. & Mann, S. Science 264, 1576–1578 (1994).

    ADS  CAS  Article  Google Scholar 

  13. Attard, G. S., Glyde, J. C. & Göltner, C. G. Nature 378, 366–368 (1995).

    ADS  CAS  Article  Google Scholar 

  14. Mitzi, D. B., Feild, C. A., Harrison, W. T. A. & Guloy, A. M. Nature 369, 467–469 (1994).

    ADS  CAS  Article  Google Scholar 

  15. Berman, A., Addadi, L. & Weiner, S. Nature 331, 546–548 (1988).

    ADS  CAS  Article  Google Scholar 

  16. Berman, A. et al. Science 250, 664–667 (1990).

    ADS  CAS  Article  Google Scholar 

  17. Berman, A. et al. Science 259, 776–779 (1993).

    ADS  CAS  Article  Google Scholar 

  18. Steigerwald, M. L. & Brus, L. E. Ace. Chem. Res. 23, 183–188 (1990).

    CAS  Article  Google Scholar 

  19. Fendler, J. H. Membrane-Mimetic Approach to Advanced Materials (Springer, Berlin, 1994).

    Book  Google Scholar 

  20. Dameron, C. T. et al. Nature 338, 596–597 (1989).

    ADS  CAS  Article  Google Scholar 

  21. Wang, Y. & Herron, N. J. phys. Chem. 95, 525–532 (1991).

    CAS  Article  Google Scholar 

  22. Bianconi, P. A., Lin, J. & Strzelecki, A. R. Nature 349, 315–317 (1991).

    ADS  CAS  Article  Google Scholar 

  23. Lin, J., Cates, E. & Bianconi, P. A. J. Am. chem. Soc. 116, 4738–4745 (1994).

    CAS  Article  Google Scholar 

  24. Yuan, U., Fendler, J. H. & Cabasso, I. Chem. Mater. 4, 312–318 (1992).

    CAS  Article  Google Scholar 

  25. Cummins, C. C., Schrock, R. R. & Cohen, R. E. Chem. Mater. 4, 27–30 (1992).

    CAS  Article  Google Scholar 

  26. Moffitt, M. & Eisenburg, A. Chem. Mater. 7, 1178–1185 (1995).

    CAS  Article  Google Scholar 

  27. Moffitt, M., McMahon, L., Pessel, V. & Eisenburg, A. Chem. Mater. 7, 1185–1192 (1995).

    CAS  Article  Google Scholar 

  28. Weller, H. Angew. Chem. 32, 41–53 (1993).

    Article  Google Scholar 

  29. Yang, J., Meldrum, F. C. & Fendler, J. H. J. phys. Chem. 99, 5500–5504 (1995).

    CAS  Article  Google Scholar 

  30. Facci, P., Erokhin, V., Tronin, A. & Nicolini, C. J. phys. Chem. 98, 13323–13327 (1994).

    CAS  Article  Google Scholar 

  31. Brust, M., Bethell, D., Schriffrin, D. J. & Kiely, J. K. Adv. Mater. 7, 795–797 (1995).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Braun, P., Osenar, P. & Stupp, S. Semiconducting superlattices templated by molecular assemblies. Nature 380, 325–328 (1996). https://doi.org/10.1038/380325a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380325a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing