Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orientation selectivity of thalamic input to simple cells of cat visual cortex

Abstract

MORE than 30 years after Hubel and Wiesel1 first described orientation selectivity in the mammalian visual cortex, the mechanism that gives rise to this property is still controversial. Hubel and Wiesel1 proposed a simple model for the origin of orientation tuning, in which the circularly symmetrical receptive fields of neurons in the lateral geniculate nucleus that excite a cortical simple cell are arranged in rows. Since this model was proposed, several experiments2–6 and neuronal simulations7,8 have suggested that the connectivity between the lateral geniculate nucleus and the cortex is not well organized in an orientation-specific fashion, and that orientation tuning arises instead from extensive interactions within the cortex. To test these models we have recorded visually evoked synaptic potentials in simple cells while cooling the cortex9, which largely inactivates the cortical network, but leaves geniculate synaptic input functional. We report that the orientation tuning of these potentials is almost unaffected by cooling the cortex, in agreement with Hubel and Wiesel's original proposal1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  2. Blakemore, C. & Tobin, E. A. Expl Brain Res. 15, 439–440 (1972).

    Article  CAS  Google Scholar 

  3. Creutzfeldt, O. D., Kuhnt, U. & Benevento, L. A. Expl Brain Res. 21, 251–274 (1974).

    CAS  Google Scholar 

  4. Sillito, A. M. J. Physiol., Lond. 250, 305–329 (1975).

    Article  CAS  Google Scholar 

  5. Crook, J. M., Eysel, U. T. & Machemer, H. F. Neuroscience 40, 1–12 (1991).

    Article  CAS  Google Scholar 

  6. Kisvarday, Z. F., Kim, D. S., Eysel, U. T. & Bonhoeffer, T. Eur. J. Neurosci. 6, 1619–1632 (1994).

    Article  CAS  Google Scholar 

  7. Douglas, R. J. & Martin, K. A. C. J. Physiol., Lond. 440, 735–769 (1991).

    Article  CAS  Google Scholar 

  8. Somers, D. C., Nelson, S. B. & Sur, M. J. Neurosci. 15, 5448–5465 (1995).

    Article  CAS  Google Scholar 

  9. Kalil, R. E. & Chase, R. J. Neurophysiol. 33, 459–474 (1970).

    Article  CAS  Google Scholar 

  10. Gilbert, C. D. & Kelly, J. P. J. comp. Neurol. 163, 81–105 (1975).

    Article  CAS  Google Scholar 

  11. Ferster, D. & Lindström, S. J. Physiol., Lond. 367, 233–252 (1985).

    Article  CAS  Google Scholar 

  12. LeVay, S. & Gilbert, C. D. Brain Res. 113, 1–19 (1976).

    Article  CAS  Google Scholar 

  13. Gilbert, C. D. & Wiesel, T. N. Nature 280, 120–125 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Hubel, D. H. & Wiesel, T. N. J. Neurophysiol. 28, 229–289 (1965).

    Article  CAS  Google Scholar 

  15. Shatz, C. J. J. comp. Neurol. 173, 497–518 (1977).

    Article  CAS  Google Scholar 

  16. Ferster, D. J. Neurosci. 6, 1284–1301 (1986).

    Article  CAS  Google Scholar 

  17. Douglas, R. J., Martin, K. A. C. & Whitteridge, D. Nature 332, 642–644 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Ferster, D. & Jagadeesh, B. J. Neurosci. 12, 1262–1274 (1992).

    Article  CAS  Google Scholar 

  19. Nelson, S., Toth, L., Sheth, B. & Sur, M. Science 265, 774–777 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C. & Suarez, H. H. Science 269, 981–985 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Saul, A. B. & Humphrey, A. L. J. Neurophysiol. 64, 206–224 (1990).

    Article  CAS  Google Scholar 

  22. Maex, R. thesis, Katholieke Univ. Leuven (1994).

  23. Suarez, H., Koch, C. & Douglas, R. J. Neurosci. 15, 6700–6719 (1995).

    Article  CAS  Google Scholar 

  24. Tanaka, K. J. Neurophysiol. 49, 1303–1318 (1983).

    Article  CAS  Google Scholar 

  25. Reid, R. C. & Alonso, J.-M. Nature 378, 281–284 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Jones, J. P. & Palmer, L. A. J. Neurophysiol. 58, 1187–1211 (1987).

    Article  CAS  Google Scholar 

  27. Chapman, B., Zahs, K. R. & Stryker, M. P. J. Neurosci. 11, 1347–1358 (1991).

    Article  CAS  Google Scholar 

  28. Chapman, B. & Stryker, M. P. J. Neurosci. 13, 5251–5262 (1993).

    Article  CAS  Google Scholar 

  29. Miller, K. D. J. Neurosci. 14, 409–441 (1994).

    Article  CAS  Google Scholar 

  30. Schwark, H. D., Malpeli, J. G., Weyand, T. G. & Lee, C. J. Neurophysiol. 56, 1074–1087 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249–252 (1996). https://doi.org/10.1038/380249a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380249a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing