Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis

Article metrics

Abstract

THE induction of programmed cell death, or apoptosis, involves activation of a signalling system, many elements of which remain unknown1. The sphingomyelin pathway, initiated by hydrolysis of the phospholipid sphingomyelin in the cell membrane to generate the second messenger ceramide2,3, is thought to mediate apoptosis in response to tumour-necrosis factor (TNF)-α2,3, to Fas ligand4 and to X-rays5. It is not known whether it plays a role in the stimulation of other forms of stress-induced apoptosis. Given that environmental stresses also stimulate a stress-activated protein kinase (SAPK/JNK) 6–12, the sphingomyelin and SAPK/ JNK signalling systems may be coordinated in induction of apoptosis. Here we report that ceramide initiates apoptosis through the SAPK cascade and provide evidence for a signalling mechanism that integrates cytokine- and stress-activated apoptosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Kerr, J. F. R. & Harmon, B. V. in Apoptosis: The Molecular Basis of Cell Death (eds Tomei, L. D. & Cope, F. O.) 5–29 (Cold Spring Harbor Laboratory Press, New York, 1991).

  2. 2

    Pushkareva, M., Obeid, L. M. & Hannun, Y. A. Immun. Today 16, 294–297 (1995).

  3. 3

    Kolesnick, R. & Golde, D. W. Cell 77, 325–328 (1994).

  4. 4

    Gulbins, E. et al. Immunity 2, 341–351 (1995).

  5. 5

    Haimovitz-Friedman, A. et al. J. exp. Med. 180, 525–535 (1994).

  6. 6

    Kyriakis, J. M. et al. Nature 369, 156–160 (1994).

  7. 7

    Dérijard, B. et al. Cell 76, 1025–1037 (1994).

  8. 8

    Sluss, H. K., Barrett, T., Dérijard, B. & Davis, R. J. Molec. cell. Biol. 14, 8376–8384 (1994).

  9. 9

    Dérijard, B. et al. Science 267, 682–685 (1995).

  10. 10

    Sánchez, I. et al. Nature 372, 794–798 (1994).

  11. 11

    Yan, M. et al. Nature 372, 798–800 (1994).

  12. 12

    Lin, A. et al. Science 268, 286–290 (1995).

  13. 13

    Jarvis, W. D. et al. J. biol. Chem. 269, 31685–31692 (1994).

  14. 14

    Oberhammer, F. A. et al. Proc. natn. Acad. Sci. U.S.A. 89, 5408–5412 (1992).

  15. 15

    Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. J. Cell Biol. 119, 493–501 (1992).

  16. 16

    Westwick, J. K., Bielawska, A. E., Dbaibo, G., Hannun, Y. A. & Brenner, D. A. J. biol. Chem. 270, 22689–22692 (1995).

  17. 17

    Brown, P. H., Chen, T. K. & Birrer, M. J. Oncogene 9, 791–799 (1993).

  18. 18

    Xia, Z., Dickens, M., Raingeaud, J., Davis, R. & Greenberg, M. E. Science 270, 1326–1331 (1995).

  19. 19

    Yao, B. et al. Nature 378, 307–310 (1995).

  20. 20

    Bruder, J. T., Heidecker, G. & Rapp, U. R. Genes Dev. 6, 545–556 (1992).

  21. 21

    Mansour, S. J. et al. Science 265, 966–970 (1994).

  22. 22

    Wiegmann, K., Schutze, S., Machleidt, T., Witte, D. & Krönke, M. Cell 78, 1005–1015 (1994).

  23. 23

    Ham, J. et al. Cell 14, 927–939 (1995).

  24. 24

    Johnson, E. M. & Deckwarth, T. L. A. Rev. Neurosci. 16, 31–46 (1993).

  25. 25

    Martin, S. J. Trends Cell Biol. 3, 141–144 (1993).

  26. 26

    Karin, M. J. biol. Chem. 270, 16483–16486 (1995).

  27. 27

    Su, B. et al. Cell 77, 727–736 (1994).

  28. 28

    Kolesnick, R. & Fuks, Z. J. exp. Med. 181, 1949–1952 (1995).

  29. 29

    Alani, R. et al. Molec. cell. Biol. 11, 6286–6295 (1991).

  30. 30

    Kameshita, I. & Fujisawa, H. Analyt. Biochem. 183, 139–143 (1989).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.