Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid acceleration of the polar solar wind

Abstract

THE solar wind is a supersonic outflow of coronal plasma into interplanetary space, and is the agent that carries solar disturbances to the Earth. Direct measurements of the wind speed over a range of distances—from the orbit of Mercury1 to beyond the outermost planets2 and now over the solar poles3—show that the acceleration is largely complete by 70 solar radii (R). But there are no direct measurements nearer the Sun with which to constrain theoretical models of the acceleration. In principle, the speed of the solar wind in the acceleration region can be inferred by indirect methods such as radio scattering, but this is not straightforward as these data provide a measure of the wind properties integrated along the lines of sight. Here we report radio—scattering measurements of the speed of the south polar stream which have been corrected for this path integration, and also for the potential bias due to the presence of plasma waves. Our results indicate that the acceleration of the polar wind is almost complete by 10 R much closer to the Sun than had been expected4. This suggests that the acceleration of the solar wind and the heating of the solar corona occur in essentially the same region, and thus that the underlying mechanisms may be strongly linked5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schwenn, R. in Physics of the Inner Heliosphere (eds Schwenn, R. & Marsch, E.) 99–181 (Springer, Heidelberg, 1990).

    Google Scholar 

  2. Richardson, J. D., Paularena, K. I., Lazarus, A. J. & Belcher, J. W. Geophys. Res. Lett. 22, 325–328 (1995).

    Article  ADS  Google Scholar 

  3. Phillips, J. L. et al. Geophys. Res. Lett. 21, 1105–1108 (1994).

    Article  ADS  Google Scholar 

  4. Esser, R., Leer, E., Habbal, S. R. & Withbroe, G. L. J. geophys. Res. 91, 2950–2960 (1986).

    Article  ADS  Google Scholar 

  5. Hollweg, J. V. J. geophys. Res. 91, 4111–4125 (1986).

    Article  ADS  Google Scholar 

  6. Dennison, P. A. & Hewish, A. Nature 213, 343–346 (1967).

    Article  ADS  Google Scholar 

  7. Briggs, B. H., Phillips, G. J. & Shinn, D. H., Proc. R. Soc. Lond. B 63, 106–121 (1950).

    Article  Google Scholar 

  8. Little, L. T. & Ekers, R. D. Astr. Astrophys. 10, 306–309 (1971).

    ADS  Google Scholar 

  9. Armstrong, J. W. & Coles, W. A. J. geophys. Res. 77, 4062–4610 (1972).

    ADS  Google Scholar 

  10. Coles, W. A. & Kaufman, J. J. Radio Sci. 13, 591–597 (1978).

    Article  ADS  Google Scholar 

  11. Bourgois, G. et al. Astr. Astrophys. 144, 452–462 (1985).

    ADS  Google Scholar 

  12. Axford, W. I. & McKenzie, J. F. in Proc. of Solar Wind Eight (eds Winterhalter, D., Gosling, J., Habbal, S. W., Kurth, W. & Neugebauer, M.) (AIP, New York, in the press).

  13. Lee, R. W. & Harp, J. C. Proc. I. E. E. E. 57, 375–394 (1969).

    Google Scholar 

  14. Prokhorov, A. M., Bunkin, F. V., Gochelashvily, K. S. & Shishov, V. I. Proc. I. E. E. E. 63, 790–811 (1975).

    ADS  Google Scholar 

  15. Coles, W. A., Grall, R. R., Klinglesmith, M. T. & Bourgois, G. J. geophys. Res. 100, 17069–17079 (1995).

    Article  ADS  Google Scholar 

  16. Kellermann, K. I. & Thompson, A. R. Science 229, 123–130 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Belcher, J. W. & Davis, L. J. geophys. Res. 76, 3534–3563 (1971).

    Article  ADS  Google Scholar 

  18. Smith, E. J. et al. Space Sci. Rev. 72, 165–170 (1995).

    Article  ADS  Google Scholar 

  19. Coles, W. A. in Wave Propagation in Random Media (Scintillation) (eds Tatarski, V. I., Ishimaru, A. & Zavorotny, V. U.) 156–168 (SPIE, Bellingham, WA, 1993).

    Google Scholar 

  20. Armstrong, J. W., Coles, W. A., Kojima, M. & Rickett, B. J. Astrophys. J. 358, 685–692 (1990).

    Article  ADS  Google Scholar 

  21. Phillips, J. L. et al. in Proc. of Solar Wind Eight (eds Winterhalter, D., Gosling, J., Habbal, S. R., Kurth, W. & Neugebauer, M.) (AIP, New York, in the press).

  22. Fisher, R. R. & Guhathakurta, M. Space. Sci. Rev. 70, 267–272 (1994).

    Article  ADS  Google Scholar 

  23. Habbal, S. R., Esser, R., Guhathakurta, M. & Fisher, R. R. Geophys. Res. Lett. 22, 1465–1468 (1995).

    Article  ADS  Google Scholar 

  24. Munroe, R. H. & Jackson, B. V. Astrophys. J. 213, 874–886 (1977).

    Article  ADS  Google Scholar 

  25. Esser, R. & Habbal, S. in Proc. of Solar Wind Eight (eds Winterhalter, D., Gosling, J., Habbal, S. R., Kurth, W. & Neugebauer, M.) (AIP, New York, in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grail, R., Coles, W., Klinglesmith, M. et al. Rapid acceleration of the polar solar wind. Nature 379, 429–432 (1996). https://doi.org/10.1038/379429a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379429a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing