Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The origin and early evolution of plants on land


The origin and early evolution of land plants in the mid-Palaeozoic era, between about 480 and 360 million years ago, was an important event in the history of life, with far-reaching consequences for the evolution of terrestrial organisms and global environments. A recent surge of interest, catalysed by palaeobotanical discoveries and advances in the systematics of living plants, provides a revised perspective on the evolution of early land plants and suggests new directions for future research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Morphological diversity among basal living land plants and potential land-plant sister groups.
Figure 2: a, Longitudinal section of part of a silicified early fossil gametophyte (Kidstonophyton discoides from the Rhynie Chert).
Figure 3: Sporophyte diversity in Early Devonian rhyniophyte fossils.
Figure 4: Simplified phylogenetic tree showing the minimum stratigraphic ranges of selected groups based on megafossils (thick bars) and their minim.
Figure 5: Diversity of water-conducting cells (tracheids) in early land plants (median longitudinal section through cells, basal and proximal end wa.


  1. 1

    Banks, H. P. Reclassification of Psilophyta. Taxon 24, 401–413 (1975).

    Google Scholar 

  2. 2

    Chaloner, W. G. & Sheerin, A. in The Devonian System(eds House, M. R., Scrutton, C. T. &Bassett, M. G.) 145–161 (The Palaeontological Association, London, (1979)).

    Google Scholar 

  3. 3

    Gray, J. Major Paleozoic land plant evolutionary bio-events. Palaeogeog. Palaeoclimatol. Palaeocol. 104, 153–169 (1993).

    Google Scholar 

  4. 4

    Graham, L. E. Origin of Land Plants(Wiley, New York, (1993)).

    Google Scholar 

  5. 5

    Mishler, B. al. Phylogenetic relationships of the “green algae” and “bryophytes”. Ann. MO Bot. Gard. 81, 451–483 (1994).

    Google Scholar 

  6. 6

    Manhart, J. R. & Palmer, J. G. The gain of two chloroplast tRNA introns marks the green algal ancestors of land plants. Nature 345, 268–270 (1990).

    ADS  CAS  PubMed  Google Scholar 

  7. 7

    Manhart, J. R. Phylogenetic analysis of green plant rbcL sequences. Mol. Phylogenet. Evol. 3, 114–127 (1994).

    Google Scholar 

  8. 8

    Raubeson, L. A. & Jansen, R. K. Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255, 1697–1699 (1992).

    Google Scholar 

  9. 9

    Chapman, R. L. & Buchheim, M. A. Ribosomal RNA gene sequences: analysis and significance in the phylogeny and taxonomy of green algae. Crit. Rev. Plant Sci. 10, 343–368 (1991).

    Google Scholar 

  10. 10

    McCourt, R. M., Karol, K. G., Guerlesquin, M. & Feist, M. Phylogeny of extant genera in the family Characeae (Charales, Charophyceae) based on rbcL sequences and morphology. Am. J. Bot. 83, 125–131 (1996).

    Google Scholar 

  11. 11

    Pryer, K. M., Smith, A. R. & Skog, J. E. Phylogenetic relationships of extant ferns based on evidence from morphology and rbcL sequences. Am. Fern J. 85, 205–282 (1995).

    Google Scholar 

  12. 12

    Kranz, H. al. The origin of land plants: phylogenetic relationships among charophytes, bryophytes, and vascular plants inferred from complete small-subunit ribosomal RNA gene sequences. J. Mol. Evol. 41, 74–84 (1995).

    Google Scholar 

  13. 13

    Kranz, H. D. & Huss, V. A. R. Molecular evolution of pteridophytes and their relationships to seed plants: evidence from complete 18S rRNA gene sequences. Plant Syst. Evol. 202, 1–11 (1996).

    Google Scholar 

  14. 14

    Hiesel, R., von Haeseler, A. & Brennicke, A. Plant mitochondrial nucleic acid sequences as a tool for phylogenetic analysis. Proc. Natl Acad. Sci. USA 91, 634–638 (1994).

    Google Scholar 

  15. 15

    Edwards, D., Davies, K. L. & Axe, L. Avascular conducting strand in the early land plant Cooksonia. Nature 357, 683–685 (1992).

    ADS  Google Scholar 

  16. 16

    Edwards, D., Duckett, J. G. & Richardson, J. B. Hepatic characters in the earliest land plants. Nature 374, 635–636 (1995).

    ADS  CAS  Google Scholar 

  17. 17

    Fanning, U., Edwards, D. & Richardson, J. B. Adiverse assemblage of early land plants from the Lower Devonian of the Welsh Borderland. Bot. J. Linn. Soc. 109, 161–188 (1992).

    Google Scholar 

  18. 18

    Kenrick, P. Alternation of generations in land plants: new phylogenetic and morphological evidence. Biol. Rev. 69, 293–330 (1994).

    Google Scholar 

  19. 19

    Kenrick, P. & Crane, P. R. Water-conducting cells in early fossil land plants: implications for the early evolution of tracheophytes. Bot. Gaz. 152, 335–356 (1991).

    Google Scholar 

  20. 20

    Remy, W. Gensel, P. G. & Hass, H. The gametophyte generation of some early Devonian land plants. Int. J. Plant Sci. 154, 35–58 (1993).

    Google Scholar 

  21. 21

    Remy, W. & Hass, H. New information on gametophytes and sporophytes of Aglaophyton major and inferences about possible environmental adaptations. Rev. Palaeobot. Palynol. 90, 175–194 (1996).

    Google Scholar 

  22. 22

    Remy, W., Taylor, T. N., Hass, H. & Kerp, H. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Nat Acad. Sci. USA 91, 11841–11843 (1994).

    Google Scholar 

  23. 23

    Stein, W. E., Harmon, G. D. & Hueber, F. M. in International Workshop on the Biology and Evolutionary Implications on Early Devonian Plants(Westfälische Wilhelms-Universität Münster, Germany, (1994)).

    Google Scholar 

  24. 24

    Taylor, T. N. & Osborne, J. M. The Importance of fungi in shaping the paleoecosystem. Rev. Palaeobot. Palynol. 90, 249–262 (1996).

    Google Scholar 

  25. 25

    Taylor, W. A. Ultrastructure of lower Paleozoic dyads from southern Ohio. Rev. Palaeobot. Palynol. 92, 269–280 (1996).

    Google Scholar 

  26. 26

    Kenrick, P. & Crane, P. R. The Origin and Early Diversification of Land Plants: A Cladistic Study(Smithsonian Institution Press, Washington DC, (1997)).

    Google Scholar 

  27. 27

    Gray, J. The microfossil record of early land plants: advances in understanding of early terrestrialization, 1970–1984 Phil. Trans. R. Soc. Lond. B 309, 167–195 (1985).

    Google Scholar 

  28. 28

    Gray, J. & Boucot, A. J. Early vascular land plants: proof and conjecture. Lethaia 10, 145–174 (1977).

    Google Scholar 

  29. 29

    DiMichele, W. Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals(ed. Behrensmeyer, A. K.) 205–325 (Univ. Chicago Press, (1992)).

    Google Scholar 

  30. 30

    Fanning, U., Richardson, J. B. & Edwards, D. in Pollen and Spores(eds Blackmore, S. &Barnes, S. H.) 25–47 (Clarendon, Oxford, (1991)).

    Google Scholar 

  31. 31

    Kroken, S. B., Graham, L. E. & Cook, M. E. Occurrence and evolutionary significance of resistant cell walls in charophytes and bryophytes. Am. J. Bot. 83, 1241–1254 (1996).

    Google Scholar 

  32. 32

    Wellman, C. H. & Richardson, J. B. Sporomorph assemblages from the ‘Lower Old Red Sandstone’ of Lorne, Scotland. Special Papers Palaeontol. 55, 41–101 (1996).

    Google Scholar 

  33. 33

    Edwards, D. in Palaeozoic Palaeogeography and Biogeography(eds McKerrow, W. S. &Scotese, C. R.) 233–242 (Geological Society, London, (1990)).

    Google Scholar 

  34. 34

    Morel, E., Edwards, D. & Iñiquez Rodriguez, M. The first record of Cooksonia from South America in the Silurian rocks of Bolivia. Geol. Mag. 132, 449–452 (1995).

    Google Scholar 

  35. 35

    Tims, J. D. & Chambers, T. C. Rhyniophytina and Trimerophytina from the early land flora of Victoria, Australia. Palaeontology 27, 265–279 (1984).

    Google Scholar 

  36. 36

    Cai, C. -Y., Dou, Y. -W. & Edwards, D. New observations on a Pridoli plant assemblage from north Xinjiang, northwest China, with comments on its evolutionary and palaeographical significance. Geol. Mag. 130, 155–170 (1993).

    Google Scholar 

  37. 37

    Hueber, F. M. Thoughts on the early lycopsids and zosterophylls. Ann. MO Bot. Gard. 79, 474–499 (1992).

    Google Scholar 

  38. 38

    Cai, al. An early Silurian vascular plant. Nature 379, 592 ((1996)).

    ADS  CAS  Google Scholar 

  39. 39

    Geng, B. -Y. Anatomy and morphology of Pinnatiramosus, a new plant from the Middle Silurian (Wenlockian) of China. Acta Bot. Sin. 28, 664–670 (1986).

    Google Scholar 

  40. 40

    Raymond, A. & Metz, C. Laurussian land-plant diversity during the Silurian and Devonian: mass extinction, sampling bias, or both? Paleobiology 21, 74–91 (1995).

    Google Scholar 

  41. 41

    Edwards, D. & Davies, M. S. in Major evolutionary radiations(eds Taylor, P. D. &Larwood, G. P.) 351–376 (Clarendon, Oxford, (1990)).

    Google Scholar 

  42. 42

    Knoll, A. H., Niklas, K. J., Gensel, P. G. & Tiffney, B. H. Character diversification and patterns of evolution in early vascular plants. Paleobiology 10, 34–47 (1984).

    Google Scholar 

  43. 43

    Gensel, P. G. & Andrews, H. N. Plant Life in the Devonian(Praeger, New York, (1984)).

    Google Scholar 

  44. 44

    Taylor, T. N. & Taylor, E. L. The Biology and Evolution of Fossil Plants(Prentice Hall, New Jersey, (1993)).

    Google Scholar 

  45. 45

    Schweitzer, H. -J. Die Unterdevonflora des Rheinlandes. Palaeontographica B 189, 1–138 (1983).

    Google Scholar 

  46. 46

    Gerrienne, P. Inventaire des végétaux éodévoniens de Belgique. Ann. Soc. Géol. Belg. 116, 105–117 (1993).

    Google Scholar 

  47. 47

    Tappan, H. N. The Paleobiology of Plant Protists(Freeman, San Francisco, (1980)).

    Google Scholar 

  48. 48

    Raven, J. Plant responses to high O2concentrations: relevance to previous high O2episodes. Palaeogreg. Palaeoclimatol. Palaeocol. 97, 19–38 (1991).

    Google Scholar 

  49. 49

    Sztein, A. E., Cohen, J. D., Slovin, J. P. & Cooke, T. J. Auxin metabolism in representative land plants. Am. J. Bot. 82, 1514–1521 (1995).

    Google Scholar 

  50. 50

    Edwards, D. New insights into early land ecosystems: a glimpse of a Lilliputian world. Rev. Palaeobot. Palynol. 90, 159–174 (1996).

    Google Scholar 

  51. 51

    Edwards, D., Fanning, U. & Richardson, J. B. Stomata and sterome in early land plants. Nature 323, 438–440 (1986).

    ADS  Google Scholar 

  52. 52

    Raven, J. A. Comparative physiology of plant and arthropod land adaptation. Phil. Trans. R. Soc. Lond. B 309, 273–288 (1985).

    Google Scholar 

  53. 53

    Raven, J. A. The evolution of vascular plants in relation to quantitative functioning of dead water-conducting cells and stomata. Biol. Rev. 68, 337–363 (1993).

    Google Scholar 

  54. 54

    Niklas, K. J. Plant Allometry: The Scaling of Form and Process.(Univ. Chicago Press, (1994)).

    Google Scholar 

  55. 55

    Beerbower, R. in Geological Factors and the Evolution of Plants(ed. Tiffney, B. H.) 47–92 (Yale Univ. Press, New Haven, CT, (1985)).

    Google Scholar 

  56. 56

    Berner, R. A. GEOCARB II: a revised model of atmospheric CO2over Phanerozoic time. Am. J. Sci. 294, 56–91 (1994).

    Google Scholar 

  57. 57

    Mora, C. I., Driese, S. G. & Colarusso, L. A. Middle to Late Paleozoic atmospheric CO2levels from soil carbonate and organic matter. Science 271, 1105–1107 (1996).

    Google Scholar 

  58. 58

    Algeo, T. J., Berner, R., Maynard, J. B. & Scheckler, S. E. Late Devonian oceanic anoxic events and biotic crises: “rooted” in the evolution of vascular land plants? GSA Today 5, 45, 64–66 (1995).

    Google Scholar 

  59. 59

    Retallack, G. J. in Paleosols: their Recognition and Interpretation(ed. Wright, V. P.) (Blackwell, Oxford, (1986)).

    Google Scholar 

  60. 60

    Knoll, A. H. The early evolution of eukaryotes: a geological perspective. Science 256, 622–627 (1992).

    Google Scholar 

  61. 61

    Bengtson, S. (ed) Early life on Earth.(Columbia Univ. Press, New York, (1994)).

    Google Scholar 

  62. 62

    Taylor, T. N., Hass, H., Remy, W. & Kerp, H. The oldest fossil lichen. Nature 378, 244 (1995).

    ADS  CAS  Google Scholar 

  63. 63

    Hemsley, A. R. in Ultrastructure of Fossil Spores and Pollen(eds Kurmann, M. H. &Doyle, J. A.) 1–21 (Royal Botanic Gardens, Kew, (1994)).

    Google Scholar 

  64. 64

    Hueber, F. M. in International Workshop on the Biology and Evolutionary Implications of Early Devonian Plants(Westfälische Wilhelms-Universität, Münster, (1994)).

    Google Scholar 

  65. 65

    Simon, L., Bousquet, J., Léveque, C. & Lalonde, M. Origin and diversification of endomycorrhizal fungi with vascular plants. Nature 363, 67–69 (1993).

    ADS  Google Scholar 

  66. 66

    Selden, P. A. & Edwards, D. in Evolution and the Fossil Record(eds Allen, K. C. &Briggs, D. E. G.) 122–152 (Belhaven, London, (1989)).

    Google Scholar 

  67. 67

    Gray, J. & Shear, W. Early life on land. Am. Sci. 80, 444–456 (1992)).

    Google Scholar 

  68. 68

    Gray, J. & Boucot, A. J. Early Silurian nonmarine animal remains and the nature of the early continental ecosystem. Acta Palaeontol. Pol. 38, 303–328 (1994).

    Google Scholar 

  69. 69

    Retallack, G. J. & Feakes, C. R. Trace fossil evidence for Late Ordovician animals on land. Science 235, 61–63 (1987).

    Google Scholar 

  70. 70

    Scott, A. C., Stephenson, J. & Chaloner, W. G. Interaction and coevolution of plants and arthropods during the Palaeozoic and Mesozoic. Phil. Trans. R. Soc. Lond. B 336, 129–165 (1992).

    Google Scholar 

  71. 71

    Banks, H. P. & Colthart, B. J. Plant-animal-fungal interactions in early Devonian trimerophytes from Gaspé, Canada. Am. J. Bot. 80, 992–1001 (1993).

    Google Scholar 

  72. 72

    Edwards, D., Seldon, P. A., Richardson, J. B. & Axe, L. Coprolites as evidence for plant-animal interaction in Siluro-Devonian terrestrial ecosystems. Nature 377, 329–331 (1995).

    ADS  CAS  Google Scholar 

  73. 73

    Allen, J. R. L. Marine to fresh water: the sedimentology of the interrupted environmental transition (Ludlow-Siegenian) in the Anglo-Welsh region. Phil. Trans. R. Soc. Lond. B 309, 85–104 (1985).

    Google Scholar 

  74. 74

    Melkonian, M. & Surek, B. Phylogeny of the Chlorophyta: congruence between ultrastructural and molecular evidence. Bull. Soc. Zool. Fr. 120, 191–208 (1995).

    Google Scholar 

  75. 75

    Bremer, K., Humphries, C. J., Mishler, B. D. & Churchill, S. P. On cladistic relationships in green plants. Taxon 36, 339–349 (1987).

    Google Scholar 

  76. 76

    Garbary, D. J., Renzaglia, K. S. & Duckett, J. G. The phylogeny of land plants: a cladistic analysis based on male gametogenesis. Plant Syst. Evol. 188, 237–269 (1993).

    Google Scholar 

  77. 77

    Capesius, I. Amolecular phylogeny of bryophytes based on the nuclear encoded 18S rRNA genes. J. Plant Physiol. 146, 59–63 (1995).

    Google Scholar 

  78. 78

    Taylor, T. N. The origin of land plants: some answers, more questions. Taxon 37, 805–833 (1988).

    Google Scholar 

  79. 79

    Rothwell, G. W. in Pteridiology in Perspective(eds Camus, J. M., Gibby, M. &Johns, R. J.) (Royal Botanic Gardens, Kew) (in the press).

  80. 80

    Albert, V. al. Functional constraints and rbcL evidence for land plant phylogeny. Ann. MO Bot. Gard. 81, 534–567 (1994).

    Google Scholar 

  81. 81

    Edwards, D., Fanning, U. & Richardson, J. B. Lower Devonian coalified sporangia from Shropshire: Salopella Edwards &Richardson and >Tortilicaulis Edwards. Bot. J. Linn. Soc. 116, 89–110 (1994).

    Google Scholar 

  82. 82

    Bateman, R. M., DiMichele, W. A. & Willard, D. A. Experimental cladistic analysis of anatomically preserved lycopsids from the Carboniferous of Euramerica: an essay on paleobotanical phylogenetics. Ann. MO Bot. Gard. 79, 500–559 (1992).

    Google Scholar 

  83. 83

    Feist, M. & Grambast-Fesssard, N. in Calcareous Algae and Stromatolites(ed. Riding, R.) 189–203 (Springer, Berlin, (1991)).

    Google Scholar 

  84. 84

    Hébant, C. in Bryophyte Systematics(eds Clarke, G. C. S. &Duckett, J. G.) 365–383 (Academic, London, (1979)).

    Google Scholar 

Download references


We thank W. G. Chaloner, D. Edwards, J. A. Raven, P. S. Herendeen, E. M. Friis, S. Bengtson and especially J. Gray for criticisms of earlier drafts of this manuscript; W. Burger, J. Cattel, A. N. Drinnan, M. Feist, L. E. Graham, H. Haas, H. Kerp, W. A. Taylor and P. Lidmark for assistance with illustrations. This work was supported in part by the Swedish Natural Science Research Council (NFR) and the National Science Foundation.

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kenrick, P., Crane, P. The origin and early evolution of plants on land. Nature 389, 33–39 (1997).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing