Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sustained and significant negative water pressure in xylem

Abstract

DESPITE two centuries of research, the mechanism of water transport in plants is still debated1–8.The prevailing cohesion–tension theory2,3, which states that water is pulled upwards by capillarity in cell-wall pores, remains vulnerable to challenge because its corollary is difficult to prove: that large negative pressures exist in xylem conduits4–7. Recent xylem pressure-probe and z-tube experiments suggest that cavitation limits xylem pressures to above −0.5 MPa, despite the much more negative pressures predicted by the cohesion–tension theory and measured with the standard pressure-chamber method4,5,9,10. Here we show, using centrifugal force to induce negative pressure between −0.5 and −3.5 MPa in intact stems, that xylem conduits remained water-filled and conductive to species-specific pressures ranging from −1.2 to below −3.5 MPa. Results were consistent when stems were air-dried or injected with air. Agreement among these techniques demonstrates that xylem can support large negative pressures, that the pressure chamber reliably measures these pressures, and that cavitation is nucleated by air entry through conduit wall pores.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hales, S. Vegetable Staticks (W. & J. Inneys and T. Woodward, London, 1727).

    Google Scholar 

  2. Dixon, H. H. & Joly, J. Phil. Trans. R. Soc. Lond. B 186, 563–576 (1895).

    Article  Google Scholar 

  3. Pickard, W. F. Prog. Biophys. molec. Biol. 37, 181–229 (1981).

    Article  Google Scholar 

  4. Zimmermann, U. et al. Pl. Cell. Envir. 17, 1169–1181 (1994).

    Article  Google Scholar 

  5. Smith, A. M. Ann. Bot. 74, 647–651 (1994).

    Article  Google Scholar 

  6. Canny, M. J. Ann. Bot. 75, 343–357 (1995).

    Article  Google Scholar 

  7. Canny, J. J. A. Rev. Pl. Physiol. molec. Biol. 46, 215–236 (1995).

    Article  CAS  Google Scholar 

  8. Sperry, J. S. et al. Pl. Cell. Envir. (in the press).

  9. Zimmermann, U. et al. in Water Deficits: Plant Responses from Cell to Community (eds Smith, J. A. C. & Griffiths, H.) 87–108 (Bios, Oxford, 1993).

    Google Scholar 

  10. Zimmermann, U., Haase, A., Langbein, D. & Meinzer, F. Phil. Trans. R. Soc. Lond. B 341, 19–31 (1993).

    Article  Google Scholar 

  11. Oertli, J. J. Z. Pflanzenphysiol. 65, 195–209 (1971).

    Google Scholar 

  12. Apfel, R. E. Scient. Am. 227, 58–71 (1972).

    Article  CAS  Google Scholar 

  13. Green, J. L. et al. Science 249, 649–652 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Temperley, H. N. V. Proc. phys. Soc. 59, 199–208 (1946).

    Article  ADS  Google Scholar 

  15. Fisher, J. C. J. appl. Phys. 19, 1062–1067 (1948).

    Article  ADS  Google Scholar 

  16. Trevena, D. H. The Liquid Phase (Wykeham, London, 1975).

    Google Scholar 

  17. Trevena, D. H. Am. J. Phys. 47, 341–345 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Tyree, M. T., Davis, S. D. & Cochard, H. Int. Ass. Wood Anat. J. 14, 335–360 (1994).

    Google Scholar 

  19. Briggs, L. J. J. appl. Phys. 21, 721–722 (1950).

    Article  ADS  CAS  Google Scholar 

  20. Smith, A. M. J. exp. Biol. 157, 257–271 (1991).

    Google Scholar 

  21. Yang, S. & Tyree, M. T. Pl. Cell Envir. 15, 633–643 (1992).

    Article  Google Scholar 

  22. Sperry, J. S. & Tyree, M. T. Pl. Physiol. 88, 581–587 (1988).

    Article  CAS  Google Scholar 

  23. Scholander, P. F., Hammel, H. T., Bradstreet, E. D. & Hemmingsen, E. A. Science 148, 339–346 (1965).

    Article  ADS  CAS  Google Scholar 

  24. Zimmermann, M. H. Xylem Structure and the Ascent of Sap (Springer, Berlin, 1983).

    Book  Google Scholar 

  25. Sperry, J. S. & Saliendra, N. Z. Pl. Cell Envir. 17, 1233–1241 (1994).

    Article  Google Scholar 

  26. Holbrook, N. M., Burns, M. J. & Field, C. B. Science (in the press).

  27. Murphy, R. & Smith, J. A. C. Pl. Cell. Envir. 17, 15–29 (1994).

    Article  Google Scholar 

  28. Sperry, J. S. & Tyree, M. T. Pl. Cell Envir. 13, 427–436 (1990).

    Article  Google Scholar 

  29. Jarbeau, J. A., Ewers, F. W. & Davis, S. D. Pl. Cell Envir. 17, 695–705 (1994).

    Google Scholar 

  30. Sperry, J. S., Donnelly, J. R. & Tyree, M. T. Pl. Cell Envir. 11, 35–40 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pockman, W., Sperry, J. & O'Leary, J. Sustained and significant negative water pressure in xylem. Nature 378, 715–716 (1995). https://doi.org/10.1038/378715a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378715a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing