Actin-based motility of vaccinia virus

Abstract

THE role of the cytoskeleton during viral infection is poorly understood. Here we show, using a combination of mutant and drug studies, that the intracellular enveloped form of vaccinia virus is capable of inducing the formation of actin tails that are strikingly similar to those seen in Listeria, Shigella and Rickettsia infections. Analysis using video microscopy reveals that single viral particles are propelled in vivo on the tip of actin tails, at a speed of 2.8 um min–1. On contact with the cell surface, virus particles extend outwards on actin projections at a similar rate, to contact and infect neighbouring cells. Given the similarities between the motility of vaccinia virus and bacterial pathogens, we suggest that intra-cellular pathogens have developed a common mechanism to exploit the actin cytoskeleton as a means to facilitate their direct spread between cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Goebel, S. J. et al. Virology 179, 247–266 (1990).

    CAS  Article  Google Scholar 

  2. 2

    Moss, B. in Virology (eds Fields, B. N. et al.) 2079–2111 (Raven, New York, 1990).

    Google Scholar 

  3. 3

    Payne, L. G. J. gen. Virol. 50, 89–100 (1980).

    CAS  Article  Google Scholar 

  4. 4

    Schmelz, M. et al. J. Virol. 68, 130–147 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Morgan, C. Virology 73, 43–58 (1976).

    CAS  Article  Google Scholar 

  6. 6

    Stokes, G. V. J. Virol. 18, 636–643 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Hiller, G., Weber, K., Schneider, L., Parajsz, C. & Jungwirth, C. Virology 98, 142–153 (1979).

    CAS  Article  Google Scholar 

  8. 8

    Hiller, G. & Weber, K. J. Virol. 44, 647–657 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Hiller, G., Jungwirth, C. & Weber, K. Expl Cell Res. 132, 81–87 (1981).

    CAS  Article  Google Scholar 

  10. 10

    Krempien, U. et al. Virology 113, 556–564 (1981).

    CAS  Article  Google Scholar 

  11. 11

    Pollard, T. D. Curr. Biol. 5, 837–840 (1995).

    CAS  Article  Google Scholar 

  12. 12

    Cossart, P. Curr. Opin. Cell Biol. 7, 94–101 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Tilney, L. G. & Portnoy, D. A. J. Cell Biol. 109, 1597–1608 (1989).

    CAS  Article  Google Scholar 

  14. 14

    Heinzen, R. A., Hayes, S. F., Peacock, M. G. & Hackstead, T. Infect. Immun. 61, 1926–1935 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Bernardini, M. L., Mounier, J., d'Hauteville, H., Coquis-Rondon, M. & Sansonetti, P. J. Proc. natn. Acad. Sci. U.S.A. 86, 3867–3871 (1989).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Blasco, R. & Moss, B. J. Virol. 66, 4170–4179 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Hiller, G., Eibl, H. & Weber, K. J. Virol. 39, 903–913 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Kato, N., Eggers, H. J. & Roily, H. J. exp. Med. 129, 795–808 (1969).

    CAS  Article  Google Scholar 

  19. 19

    Payne, L. G. & Kristenson, K. J. Virol. 32, 614–622 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Schmutz, C., Payne, L. G., Gubser, J. & Wittek, R. J. Virol. 65, 3435–3442 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Dabiri, G. A., Sanger, J. M., Portnoy, D. A. & Southwick, F. S. Proc. natn. Acad. Sci. U.S.A. 87, 6068–6072 (1990).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Theriot, J. A., Mitchison, T. J., Tilney, L. G. & Portnoy, D. A. Nature 357, 257–260 (1992).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Payne, L. G. & Kristensson, K. Archs Virol. 74, 11–20 (1982).

    CAS  Article  Google Scholar 

  24. 24

    Kocks, C. et al. Cell 68, 521–531 (1992).

    CAS  Article  Google Scholar 

  25. 25

    Gouin, E., Dehoux, P., Mengaud, J., Kocks, C. & Cossart, P. Infect. Immun. 63, 2729–2737 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Domann, E. et al. EMBO J. 11, 1981–1990 (1992).

    CAS  Article  Google Scholar 

  27. 27

    Blasco, R., Cole, N. B. & Moss, B. J. Virol. 65, 4598–4608 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Marchand, J.-B. et al. J. Cell Biol. 130, 1–13 (1995).

    Article  Google Scholar 

  29. 29

    Herzog, M., Draeger, A., Ehler, E. & Small, J. V. Cell Biology: A Laboratory Handbook (Academic, San Diego, 1994).

    Google Scholar 

  30. 30

    Rodriguez, J. F., Janeczko, R. & Esteban, M. J. Virol. 56, 482–488 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cudmore, S., Cossart, P., Griffiths, G. et al. Actin-based motility of vaccinia virus. Nature 378, 636–638 (1995). https://doi.org/10.1038/378636a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing