Evidence from molecular dynamics simulations for non-metallic behaviour of solid hydrogen above 160 GPa

Abstract

THE behaviour of molecular hydrogen at high pressures has implications for the interiors of the giant planets, which consist mainly of hydrogen. In particular, the question of whether solid hydrogen becomes metallic under these conditions has been much debated1–9, in part because the structure that molecular hydrogen adopts at high pressure is not known. Here we report the results of first-principles molecular dynamics simulations of solid hydrogen at pressures up to 270 GPa. We find that at 77 K, hydrogen exists as a stable, orientationally disordered phase up to 60 GPa, consistent with experimental results1,10. As the presssure is raised, a gradual transformation to an ordered orthorhombic structure begins at 160 GPa, and by 260 GPa the solid becomes semi-conducting, with an indirect band gap of 1.4eV. The calculated vibrational density of states of this phase is consistent with infrared and Raman spectra measured up to 160 GPa (ref. 11). Although limitations on the simulation time and size may result in an over-estimate of the absolute pressure, our calculations show that solid hydrogen does not become metallic, even at pressures approaching 260 GPa.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Mao, H-K & Hemley, R. J. Rev. mod. Phys. 66, 671–692 (1994).

  2. 2

    Chakravarty, S., Rose, J. H., Wood, D. & Ashcroft, N. W. Phys. Rev. B24, 1624–1635 (1981).

  3. 3

    Min, B. I., Jansen, H. J. F. & Freeman, A. J. Phys. Rev B33, 6383–6390 (1986).

  4. 4

    Barbee, T. W., Garcia, A., Cohen, M. L. & Martins, J. L., Phys. Rev. Lett. 62, 1150–1153 (1989).

  5. 5

    Chacnam, H. & Louie, S. G. Phys. Rev. Lett. 66, 64–67 (1991).

  6. 6

    Garcia, A., Barbee, T. W., Cohen, M. L. & Silvera, I. F. Europhys. Lett. 13, 355–360 (1990).

  7. 7

    Kaxiras, E., Broughton, J. & Hemley, R. J. Phys. Rev. Lett. 67, 1138–1141 (1991).

  8. 8

    Nagara, H. & Nakahara, T. Phys. Rev. Lett. 68, 2468–2471 (1992).

  9. 9

    Natoli, V., Martin, R. M. & Ceperley, D. Phys. Rev. Lett. 74, 1601–1604 (1995).

  10. 10

    Mao, H. K. et al. Science 239, 1131–1134 (1988).

  11. 11

    Hemley, R. J., Soos, Z. G., Hanfland, M. & Mao, H-K. Nature 369, 384–387 (1994).

  12. 12

    Car, R. & Parrinello, M. Phys. Rev. Lett. 55, 2471–2474 (1985).

  13. 13

    Surh, M. P., Barbee, T. W. & Mailhot, C. Phys. Rev. Lett. 70, 4090–4093 (1993).

  14. 14

    Marx, D. & Parrinello, M. Z. Phys. B95, 143–144 (1994).

  15. 15

    Sharma, S. K., Mao, H. K. & Bell, P. M. Phys. Rev. Lett. 44, 886–888 (1980).

  16. 16

    Hemley, R. J. & Mao, H. K. Phys. Rev. Lett. 61, 857–860 (1988).

  17. 17

    Hanfland, M., Hemley, R. J., Mao, H. K. & Williams, G. P. Phys. Rev. Lett. 69, 1129–1132 (1992).

  18. 18

    Hanfland, M., Hemley, R. J. & Mao, H. K. Phys. Rev. Lett. 70, 3760–3763 (1993).

  19. 19

    Kaxiras, E. & Broughton, J. Comput. Mater. Sci. 3, 368–376 (1995).

  20. 20

    Hoffmann, R. Solids and Surfaces (VCH, New York, 1988).

  21. 21

    Albright, T. A., Burdett, J. K. & Whangbo, M-H. in Orbital Interactions in Chemistry (Wiley, New York, 1985).

  22. 22

    Hohl, D. et al. Phys. Rev. Lett. 71, 541–544 (1993).

  23. 23

    Vanderbilt, D. Phys. Rev. B41, 7892–7895 (1990).

  24. 24

    Wijngaarden, R. J., Lagendijk, A. & Silvera, I. F. Phys. Rev. B26, 4957–4961 (1982).

  25. 25

    Perdew, J. P. & Zunger, A Phys. Rev. B23, 5048–5078 (1981).

  26. 26

    Perdew, J. P. Phys. Rev. B33, 8822–8824 (1986).

  27. 27

    Becke, A. D., Phys. Rev. B38, 3098–3100 (1988).

  28. 28

    Hemley, R. J. et al. Phys. Rev. B42, 6458–6470 (1990).

  29. 29

    te Velde, G. & Baerends, E. J. Phys. Rev. B44, 7888–7903 (1991).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tse, J., Klug, D. Evidence from molecular dynamics simulations for non-metallic behaviour of solid hydrogen above 160 GPa. Nature 378, 595–597 (1995). https://doi.org/10.1038/378595a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.