Letter | Published:

Myc but not Fos rescue of PDGF signalling block caused by kinase-inactive Src

Nature volume 378, pages 509512 (30 November 1995) | Download Citation

Subjects

Abstract

GROWTH factors such as platelet-derived growth factor (PDGF) elicit the transcriptional activation of a large number of immediate early genes (many of which encode transcription factors), and ultimately DNA synthesis1. Both API and Myc are activated in fibroblasts in response to growth factor stimulation2–5, and various experiments suggest their importance in proliferation6–10. Src family kinases are required for PDGF (and other growth factors) to induce DNA synthesis11,12. We have examined which transcription factors, when constitutively expressed, 'rescue' the block elicited by dominant negative Src. We report here that Myc, but not Fos and/or Jun, was able to rescue the block. In contrast, Fos and Jun, but not Myc, rescued the block induced by dominant negative Ras. Our data suggest that Src kinases control the transcriptional activation of Myc.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Cell 64, 281–302 (1991).

  2. 2.

    et al. Nature 310, 655–660 (1984).

  3. 3.

    & Nature 311, 433–488 (1984).

  4. 4.

    , , & Nature 312, 711–716 (1984).

  5. 5.

    , , & Nature 312, 716–720 (1984).

  6. 6.

    , , & Cell 35, 603–610 (1983).

  7. 7.

    , , & Proc. natn. Acad. Sci. U.S.A. 83, 4794–4798 (1986).

  8. 8.

    & Molec. cell. Biol. 7, 639–649 (1987).

  9. 9.

    , , & Proc. natn. Acad. Sci. U.S.A. 90, 654–658 (1993).

  10. 10.

    et al. Proc. natn. Acad. Sci. U.S.A. 85, 1028–1032 (1988).

  11. 11.

    , , & Proc. natn. Acad. Sci. U.S.A. 90, 7696–7700 (1993).

  12. 12.

    , , , & Molec. cell. Biol. 15, 1102–1109 (1995).

  13. 13.

    , & Nature 313, 241–243 (1985).

  14. 14.

    Curr. Genet. Dev. 4, 82–89 (1994).

  15. 15.

    , & Nature 320, 540–543 (1986).

  16. 16.

    , , , & Proc. natn. Acad. Sci. U.S.A. 89, 8869–8873 (1992).

  17. 17.

    et al. Cell 70, 93–104 (1992).

  18. 18.

    et al. Molec. cell. Biol. 14, 509–517 (1994).

  19. 19.

    et al. Molec. cell. Biol. 14, 6715–6726 (1994).

  20. 20.

    , , & Int. J. Cancer 53, 983–987 (1993).

  21. 21.

    , , & Jap. J. Cancer Res. 76, 75–78 (1985).

  22. 22.

    , , & Oncogene 5, 161–169 (1990).

  23. 23.

    et al. EMBO J. 12, 943–950 (1993).

  24. 24.

    , , & Nature 353, 361–363 (1991).

  25. 25.

    , , & J. biol. Chem. 270, 9840–9848 (1995).

  26. 26.

    , & Cell 70, 901–910 (1992).

  27. 27.

    , , & Molec. cell. Biol. 7, 523–527 (1987).

  28. 28.

    , , , & Genes Dev. 8, 453–464 (1994).

  29. 29.

    , , & Analyt. Biochem. 223, 251–258 (1994).

  30. 30.

    , , & EMBO J. 8, 1079–1085 (1989).

Download references

Author information

Affiliations

  1. Differentiation Programme, European Molecular Biology Laboratory, Postfach 10.2209, 69012 Heidelberg, Germany

    • M. Vittoria Barone
    •  & Sara A. Courtneidge
  2. SUGEN Inc., 515 Galveston Drive, Redwood City, California 94063, USA

    • Sara A. Courtneidge

Authors

  1. Search for M. Vittoria Barone in:

  2. Search for Sara A. Courtneidge in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/378509a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.