Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Alternative antipredator defences and genetic polymorphism in a pelagic predator–prey system

Abstract

DIEL vertical migration (DVM) of zooplankton is generally considered to be a predator-avoidance strategy: zooplankton migrate to greater depths during the day to reduce their chance of being detected by visual predators (fish)1. Both phenotypic plasticity and interpopulational genetic variability in DVM patterns exist in zooplankton2,3. We used large indoor mesocosms ('plankton towers'4) to study intrapopulational genetic variation for day depth in a Daphnia hyalina X galeata hybrid population. Clones differing in body size also differed in vertical distribution, with the largest clone residing at the greatest depth during the day. A selection experiment in the presence of fish indicates that alternative anti-predator strategies, which involve a complex association between habitat-selection traits and life-history strategies, might be an important factor underlying intrapopulational genetic polymorphism in zooplankton, through a balancing of fitness effects in the presence of visual predators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stich, H.-B. & Lampert, W. Nature 293, 396–398 (1981).

    Article  ADS  Google Scholar 

  2. Neill, W. E. Nature 345, 524–526 (1990).

    Article  ADS  Google Scholar 

  3. Neill, W. E. Nature 356, 54–57 (1992).

    Article  ADS  Google Scholar 

  4. Lampert, W. & Loose, C. J. Arch. Hydrobiol. 126, 53–66 (1992).

    Google Scholar 

  5. Endler, J. A. Natural Selection in the Wild (Princeton Univ. Press, 1986).

    Google Scholar 

  6. Kerfoot, W. C. & Sih, A. (eds) Predation, Direct and Indirect Impacts on Aquatic Communities (Univ. Press New England, Hanover, 1987).

  7. So, J. W. H. & Freedman, H. I. Bull. math. Biol. 48, 469–484 (1986).

    Article  MathSciNet  CAS  Google Scholar 

  8. So, J. W. H. J. Aust. math. Soc. B 31, 347–365 (1990).

    Article  Google Scholar 

  9. Pijanowska, J., Weider, L. J. & Lampert, W. Oecologia 96, 40–42 (1993).

    Article  ADS  Google Scholar 

  10. Zaret, T. M. & Suffern, J. S. Limnol. Oceanogr. 21, 804–813 (1976).

    Article  ADS  Google Scholar 

  11. Lampert, W. Funct. Ecol. 3, 21–27 (1989).

    Article  Google Scholar 

  12. Huntley, M. & Brooks, E. R. Mar. Biol. 71, 23–31 (1982).

    Article  Google Scholar 

  13. Leibold, M. A., Tessier, A. J. & West, C. T. Evolution 48, 1324–1332 (1994).

    Article  Google Scholar 

  14. Guisande, C., Duncan, A. & Lampert, W. Oecologia 87, 357–359 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Leibold, M. A. & Tessier, A. J. Oecologia 86, 342–348 (1991).

    Article  ADS  Google Scholar 

  16. Lampert, W. & Sommer, U. Limnoökologie (Thieme, New York, 1993).

    Google Scholar 

  17. Ringelberg, J. J. Plankton Res. 13, 83–89 (1991).

    Article  Google Scholar 

  18. Loose, C. J. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39, 29–36 (1993).

    Google Scholar 

  19. De Meester, L. Ecology 74, 1467–1474 (1993).

    Article  Google Scholar 

  20. Weider, L. J. Limnol. Oceanogr. 29, 225–235 (1984).

    Article  ADS  Google Scholar 

  21. De Meester, L. Hydrobiologia 225, 217–227 (1991).

    Article  Google Scholar 

  22. De Meester, L. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39, 137–155 (1993).

    Google Scholar 

  23. De Meester, L. Oecologia 97, 333–341 (1994).

    Article  ADS  Google Scholar 

  24. Ebert, D. Arch. Hydrobiol. (suppl.) 90, 453–473 (1993).

    Google Scholar 

  25. Tessier, A. J. & Consolatti, N. L. Oikos 56, 269–276 (1989).

    Article  Google Scholar 

  26. Hedrick, P. W. A. Rev. Ecol. Syst. 17, 535–566 (1986).

    Article  Google Scholar 

  27. Hebert, P. D. N. & Beaton, M. J. Methodologies for Allozyme Analysis using Cellulose Acetate Electrophoresis (Helena Laboratories, Beaumont, TX, 1989).

    Google Scholar 

  28. Rice, W. R. Evolution 43, 223–225 (1989).

    Article  Google Scholar 

  29. Paloheimo, J. E. Limnol. Oceanogr. 19, 692–694 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meester, L., Weider, L. & Tollrian, R. Alternative antipredator defences and genetic polymorphism in a pelagic predator–prey system. Nature 378, 483–485 (1995). https://doi.org/10.1038/378483a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378483a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing