Polarity-specific activities of retinoic acid receptors determined by a co-repressor

Article metrics

Abstract

RETINOIC acid receptors (RARs) and retinoid-X receptors (RXRs) activate or repress transcription by binding as heterodimers to DNA-response elements that generally consist of two direct repeat half-sites of consensus sequence AGGTCA (reviewed in ref. 1). On response elements consisting of direct repeats spaced by five base pairs (DR + 5 elements), RAR/RXR heterodimers activate transcription in response to RAR-specific ligands, such as all-trans-retinoic acid (RA)2. In contrast, on elements consisting of direct repeats spaced by one base pair (DR + 1 elements), RAR/RXR heterodimers exhibit little or no response to activating ligands and repress RXR-dependent transcription3. Here we show that ligand-dependent transactivation by RAR on DR + 5 elements requires the dissociation of a new nuclear receptor co-repressor, N-CoR, and recruitment of the putative co-activators p140 and p160 (refs 4, 5). Surprisingly, on DR + 1 elements, N-CoR remains associated with RAR/RXR heterodimers even in the presence of RAR ligands, resulting in constitutive repression. These observations indicate that DNA-response elements can allosterically regulate RAR-co-repressor interactions to determine positive or negative regulation of gene expression.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Glass, C. K. Endocr. Rev. 15, 1503–1519 (1994).

  2. 2

    Umesono, K., Murakami, K. K., Thompson, C. C. & Evans, R. M. Cell 65, 1255–1266 (1991).

  3. 3

    Mangelsdorf, D. J. et al. Cell 66, 555–561 (1991).

  4. 4

    Halachmi, S. et al. Science 264, 1455–1458 (1994).

  5. 5

    Cavailles, V., Dauvois, S., Danielian, P. S. & Parker, M. G. Proc. natn. Acad. Sci. U.S.A. 91, 10009–10013 (1994).

  6. 6

    Kurokawa, R. et al. Nature 371, 528–531 (1994).

  7. 7

    Kurokawa, R. et al. Genes Dev. 7, 1423–1435 (1993).

  8. 8

    Perlmann, T., Rangarajan, P. N., Umesono, K. & Evans, R. M. Genes Dev. 7, 1411–1422 (1993).

  9. 9

    Zechel, C. et al. EMBO J. 13, 1425–1433 (1994).

  10. 10

    Foreman, B. M., Umesono, K., Chen, J. & Evans, R. M. Cell 81, 541–550 (1995).

  11. 11

    Le Douarin, B. et al. EMBO J. 14, 2020–2033 (1995).

  12. 12

    Lee, J. W. et al. Nature 374, 91–94 (1995).

  13. 13

    Danielian, P. S., White, R., Lees, J. A. & Parker, M. G. EMBO J. 11, 1025–1033 (1992).

  14. 14

    Durand, B. et al. EMBO J. 13, 5370–5382 (1994).

  15. 15

    Barettino, D., Vivanco Ruiz, M. M. & Stunnenberg, H. G. EMBO J. 13, 3039–3049 (1994).

  16. 16

    Tone, Y., Collingwood, T. N., Adams, M. & Chatterjee, V. K. J. biol Chem. 269, 31157–31161 (1994).

  17. 17

    Baniahmad, A. et al. Molec. cell. Biol. 15, 76–86 (1995).

  18. 18

    Casanova, J. et al. Molec. cell Biol. 14, 5756–5765 (1995).

  19. 19

    Hörlein, A. et al. Nature 377, 397–404 (1995).

  20. 20

    Keidel, S., LeMotte, P. & Apfel, C. Molec. cell. Biol. 14, 287–298 (1994).

  21. 21

    Kaelin, W. G. Jr. et al. Cell 70, 351–364 (1992).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.