Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Polyphenol control of nitrogen release from pine litter

Abstract

THE importance of dissolved organic nitrogen in ecosystem nutrient fluxes and plant nutrition is only beginning to be appreciated1,2. Here we report that the polyphenol concentration of decomposing Pinus muricata litter controls the proportion of nitrogen released in dissolved organic forms relative to mineral forms (NH+4 + NO-3). We have previously shown that concentrations of polyphen-ols in P. muricata foliage vary along an extreme soil acidity/ fertility gradient3. Apparently this feedback to soil conditions controls the dominant form in which litter nitrogen is mobilized, facilitating nitrogen recovery through pine-mycorrhizal associations, minimizing nitrogen availability to competing organisms, and attenuating nitrogen losses from leaching and denitrification. Polyphenol control of nitrogen dynamics helps explain the convergent evolution of tannin-rich plant communities on highly leached soils.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Qualls, R., Haines, B. & Swank, W. Ecology 72, 254–266 (1991).

    Article  Google Scholar 

  2. Chapin, F., Moilanen, L. & Kielland, K. Ecology 75, 2373–2383 (1993).

    Google Scholar 

  3. Northup, R., Dahlgren, R. & Yu, Z. Pl. Soil 171, 255–262 (1995).

    CAS  Article  Google Scholar 

  4. Berendese, F., Bobbink, R. & Rouwenhorst, G. Oecologia 78, 338–348 (1989).

    ADS  Article  Google Scholar 

  5. Attiwill, P. & Adams, M. New Phytol. 124, 561–582 (1993).

    CAS  Article  Google Scholar 

  6. Dyck, W., Mees, C. & Hodgkiss, P. N. Z. JI For. Sci. 17, 338–352 (1987).

    Google Scholar 

  7. Fahey, T., Yavitt, J., Pearson, J. & Knight, D. Biogeochem. 1, 257–275 (1985).

    Article  Google Scholar 

  8. Vogt, K., Grier, C. & Vogt, D. Adv. Ecol. Res. 15, 303–377 (1986).

    Article  Google Scholar 

  9. Aber, J., Melillo, J. & McClaugherty, C. Can. J. Bot. 68, 2201–2208 (1990).

    Article  Google Scholar 

  10. Berg, B. & McClaugherty, C. Biogeochemistry 4, 219–224 (1987).

    CAS  Article  Google Scholar 

  11. Palm, C. & Sanchez, P. Biotropica 22, 330–338 (1990).

    Article  Google Scholar 

  12. Yavitt, J. & Fahey, T. J. Ecol. 74, 525–545 (1986).

    Article  Google Scholar 

  13. Westman, W. Ecol. Monogr. 45, 109–135 (1975).

    Article  Google Scholar 

  14. McMillan, C. Ecol. Monogr. 26, 177–212 (1956).

    Article  Google Scholar 

  15. Lamb, D. J. Ecol. 63, 615–625 (1975).

    Article  Google Scholar 

  16. Stump, L. & Binkley, D. Can. J. For. Res. 23, 492–502 (1993).

    CAS  Article  Google Scholar 

  17. White, C., Gosz, J., Horner, J. & Moore, D. Biol. Fertil. Soils 6, 93–99 (1988).

    Article  Google Scholar 

  18. Zucker, W. Am. Nat. 121, 335–365 (1983).

    CAS  Article  Google Scholar 

  19. Griffiths, R. P. & Caldwell, B. A. in Mycorrhizas in Ecosystems (eds Read, D. J., Lewis, D. H., Fitter, A. & Alexander, I.) 98–105 (CAB International, Wallingford, 1992).

    Google Scholar 

  20. Abuzinadah, R. & Read, D. New Phytol. 112, 55–60 (1989).

    CAS  Article  Google Scholar 

  21. Finlay, R., Frostegard, A. & Sonnerfeldt, A. New Phytol. 120, 105–115 (1992).

    Article  Google Scholar 

  22. Leake, J. & Read, D. Agric. Ecosyst. Environ. 29, 225–236 (1989).

    Article  Google Scholar 

  23. Kielland, K. Ecology 75, 2373–2383 (1994).

    Article  Google Scholar 

  24. Yu, Z., Northup, R. & Dahlgren, R. Commun. Soil Sci. Pl. Analysis 25, 3161–3169 (1994).

    CAS  Article  Google Scholar 

  25. Price, M. & Butler, L. J. agric. Fd Chem. 26, 1214–1218 (1978).

    CAS  Article  Google Scholar 

  26. Cassman, K. & Munns, D. Soil Sci. Soc. Am. J. 44, 1233–1237 (1980).

    ADS  CAS  Article  Google Scholar 

  27. Carlson, R. Analyt. Chem. 50, 1528–1531 (1978).

    CAS  Article  Google Scholar 

  28. Broadhurst, R. & Jones, W. J. Sci. Fd Agric. 29, 788–794 (1978).

    CAS  Article  Google Scholar 

  29. Parkinson, J. & Allen, S. Commun. Soil. Sci. Pl. Analysis 6, 1–11 (1975).

    CAS  Article  Google Scholar 

  30. Goering, H. & Van Soest, P. Agr. Handbk 379 (Agr. Res. Serv. USDA. Washington, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Northup, R., Yu, Z., Dahlgren, R. et al. Polyphenol control of nitrogen release from pine litter. Nature 377, 227–229 (1995). https://doi.org/10.1038/377227a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377227a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing