Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural basis for DNA bending by the architectural transcription factor LEF-1


LYMPHOID enhancer-binding factor (LEF-1) and the closely related T-cell factor 1 (TCF-1) are sequence-specific and cell-type-specific DNA-binding proteins that play important regulatory roles in organogenesis and thymocyte differentiation1–5. LEF-1 participates in regulation of the enhancer associated with the T cell receptor (TCR)-α gene by inducing a sharp bend in the DNA and facilitating interactions between Ets-1, PEBP2-α, and ATF/ CREB transcription factors bound at sites flanking the LEF-1 site1,2,6,7. It seems that LEF-1 plays an architectural role in the assembly and function of this regulatory nucleoprotein complex7,8. LEF-1 recognizes a specific nucleotide sequence through a high-mobility-group (HMG) domain1,2. Proteins containing HMG domains bind DNA in the minor groove, bend the double helix6,9,10, and recognize four-way junctions and other irregular DNA structures9,11. Here we report the solution structure of a complex of the LEF-1 HMG domain and adjacent basic region with its cognate DNA. The structure reveals the HMG domain bound in the widened minor groove of a markedly distorted and bent double helix. The basic region binds across the narrowed major groove and contributes to DNA recognition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Travis, A., Amsterdam, A., Belanger, C. & Grosschedl, R. Genes Dev. 5, 880–894 (1991).

    CAS  Article  Google Scholar 

  2. 2

    Waterman, M. L., Fischer, W. H. & Jones, K. A. Genes Dev. 5, 656–669 (1991).

    CAS  Article  Google Scholar 

  3. 3

    Oosterwegel, M. et al. J. exp. Med. 173, 1133–1142 (1991).

    CAS  Article  Google Scholar 

  4. 4

    Van Genderen, C. et al. Genes Dev. 8, 2691–2703 (1994).

    CAS  Article  Google Scholar 

  5. 5

    Verbeek, S. et al. Nature 374, 70–74 (1995).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Giese, K., Cox, J. & Grosschedl, R. Cell 69, 185–195 (1992).

    CAS  Article  Google Scholar 

  7. 7

    Giese, K., Kingsley, C., Kirshner, J. R. & Grosschedl, R. Genes Dev. 9, 995–1008 (1995).

    CAS  Article  Google Scholar 

  8. 8

    Grosschedl, R., Giese, K. & Pagel, J. Trends Genet. 10, 94–100 (1994).

    CAS  Article  Google Scholar 

  9. 9

    Ferrari, S. et al. EMBO J. 11, 4497–4506 (1992).

    CAS  Article  Google Scholar 

  10. 10

    Paull, T. T., Haykinson, M. J. & Johnson, R. C. Genes Dev. 7, 1521–1534 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Pil, P. M. & Lippard, S. J. Science 256, 234–237 (1992).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Weir, H. M. et al. EMBO J. 12, 1311–1319 (1993).

    CAS  Article  Google Scholar 

  13. 13

    Read, C. M., Cary, P. D., Crane-Robinson, C., Driscoll, P. C. & Norman, D. G. Nucleic Acids Res. 21, 3427–3436 (1993).

    CAS  Article  Google Scholar 

  14. 14

    Jones, D. N. M. et al. Structure 2, 609–627 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Giese, K., Amsterdam, A. & Grosschedl, R. Genes Dev. 5, 2567–2578 (1991).

    CAS  Article  Google Scholar 

  16. 16

    van de Wetering, M. & Clevers, H. EMBO J. 11, 3039–3044 (1992).

    CAS  Article  Google Scholar 

  17. 17

    Peters, R. et al. Biochemistry 34, 4569–4576 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Carlsson, P., Waterman, M. L. & Jones, K. A. Genes Dev. 7, 2418–2430 (1993).

    CAS  Article  Google Scholar 

  19. 19

    Read, C. M., Cary, P. D., Preston, N. S., Lnenicek-Allen, M. & Crane-Robinson, C. EMBO J. 13, 5639–5646 (1994).

    CAS  Article  Google Scholar 

  20. 20

    Harley, V. R., Lovell-Badge, R. & Goodfellow, P. N. Nucleic Acids Res. 22, 1500–1501 (1994).

    CAS  Article  Google Scholar 

  21. 21

    Kim, Y., Geiger, J. H., Hahn, S. & Sigler, P. B. Nature 365, 512–520 (1993).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Kim, J. L., Nikolov, D. B. & Burley, S. K. Nature 365, 520–528 (1993).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Schumacher, M. A., Choi, K. Y., Zalkin, H. & Brennan, R. G. Science 266, 763–770 (1994).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Marion, D., Kay, L. E., Sparks, S. W., Torchia, D. A. & Bax, A. J. Am. chem. Soc. 111, 1515–1517 (1989).

    CAS  Article  Google Scholar 

  25. 25

    Güntert, P., Braun, W. & Wüthrich, K. J. molec. Biol. 217, 517–530 (1991).

    Article  Google Scholar 

  26. 26

    Güntert, P. & Wüthrich, K. J. Biomol. NMR 1, 447–456 (1991).

    Article  Google Scholar 

  27. 27

    Weiner, S. J., Kollman, P. A., Nguyen, D. T. & Case, D. A. J. comput. Chem. 7, 230–252 (1986).

    CAS  Article  Google Scholar 

  28. 28

    Seip, S., Balbach, J. & Kessler, H. J. magn. Reson. B104, 172–179 (1994).

    CAS  Article  Google Scholar 

  29. 29

    Otting, G. & Wüthrich, K. Q. Rev. Biophys. 23, 39–96 (1990).

    CAS  Article  Google Scholar 

  30. 30

    Lavery, R. & Sklenár, V. J. biomolec. Struct. Dyn. 6, 63–91 (1988).

    CAS  Article  Google Scholar 

  31. 31

    Werner, M. H., Huth, J. R., Gronenborn, A. M. & Clore, G. M. Cell 81, 705–714 (1995).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Love, J., Li, X., Case, D. et al. Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376, 791–795 (1995).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing