Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients

Abstract

STIMULATION of transient increases in intracellular calcium (Cai2+) activates protein kinases1–3, regulates transcription4–9 and influences motility and morphology10–12. Developing neurons generate spontaneous Cai2+ transients, but their role in directing neuronal differentiation and the way in which they encode information are unknown. Here we image Ca2+ in spinal neurons throughout an extended period of early development, and find that two types of spontaneous events, spikes and waves, are expressed at distinct frequencies. Neuronal differentiation is altered when they are eliminated by preventing Ca2+ influx. Reimposing different frequency patterns of Ca2+ elevation demonstrates that natural spike activity is sufficient to promote normal neurotransmitter expression and channel maturation, whereas wave activity is sufficient to regulate neurite extension. Suppression of spontaneous Ca2+ elevations by BAPTA loaded intracellularly indicates that they are also necessary for differentiation. Ca2+ transients appear to encode information in their frequency, like action potentials, although they are 104 times longer in duration and less frequent, and implement an intrinsic development programme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Colbran, R. J. & Soderling, T. R. Curr. Top. Cell Regulation 31, 181–221 (1990).

    Article  CAS  Google Scholar 

  2. Braha, O., Edmonds, B., Sacktor, T., Kandel, E. R. & Klein, M. J. Neurosci. 13, 1839–1851 (1993).

    Article  CAS  Google Scholar 

  3. Ghosh, A., Carnahan, J. & Greenberg, M. E. Science 263, 1618–1623 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Sheng, M., McFadden, G. & Greenberg, M. E. Neuron 4, 571–582 (1990).

    Article  CAS  Google Scholar 

  5. Dash, P. K., Karl, K. A., Colicos, M. A., Prywes, R. & Kandel, E. R. Proc. natn. Acad. Sci. U.S.A. 88, 5061–5065 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Lerea, L. S. & McNamara, J. O. Neuron 10, 31–41 (1993).

    Article  CAS  Google Scholar 

  7. Bading, H., Ginty, D. D. & Greenberg, M. E. Science 260, 181–186 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Enslen, H. et al. J. biol. Chem. 269, 15520–15527 (1994).

    CAS  PubMed  Google Scholar 

  9. Sheng, H. Z., Fields, R. D. & Nelson, P. G. J. Neurosci. Res. 35, 459–467 (1993).

    Article  CAS  Google Scholar 

  10. Cohan, C. S. & Kater, S. B. Science 232, 1638–1640 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Cline, H. T. & Tsien, R. W. Neuron 6, 259–267 (1991).

    Article  CAS  Google Scholar 

  12. Fields, R. D., Neale, E. A. & Nelson, P. G. J. Neursoci. 10, 2950–2964 (1990).

    Article  CAS  Google Scholar 

  13. Desarmenien, M. G. & Spitzer, N. C. Neuron 7, 797–805 (1991).

    Article  CAS  Google Scholar 

  14. Spitzer, N. C., Debaca, R. C., Allen, K. A. & Holliday, J. J. comp. Neurol. 337, 168–175 (1993).

    Article  CAS  Google Scholar 

  15. Bixby, J. L. & Spitzer, N. C. Devl Biol. 106, 89–96 (1984).

    Article  CAS  Google Scholar 

  16. Holliday, J. & Spitzer, N. C. Devl Biol. 141, 13–23 (1990).

    Article  CAS  Google Scholar 

  17. Holliday, J., Adams, R. J., Sejnowski, T. J. & Spitzer, N. C. Neuron 7, 787–796 (1991).

    Article  CAS  Google Scholar 

  18. Gu, X., Olson, E. C. & Spitzer, N. C. J. Neurosci. 14, 6325–6335 (1994).

    Article  CAS  Google Scholar 

  19. Shatz, C. J. Neuron 5, 745–756 (1990).

    Article  CAS  Google Scholar 

  20. Kocsis, J. D., Rand, M. N., Lankford, K. L. & Waxman, S. G. J. Neurobiol. 25, 252–264 (1994).

    Article  CAS  Google Scholar 

  21. Rink, T. J. & Jacob, R. Trends Neurosci. 12, 43–46 (1989).

    Article  CAS  Google Scholar 

  22. Meyer, T. & Stryer, L. A. Rev. Biophys. biophys. Chem. 20, 153–174 (1991).

    Article  CAS  Google Scholar 

  23. Turrigiano, G., Abbott, L. F. & Marder, E. Science 264, 974–977 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Yuste, R., Peinado, A. & Katz, L. C. Science 257, 665–669 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Komuro, H. & Rakic, P. Science 257, 806–809 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Komuro, H. & Rakic, P. Science 260, 95–97 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Poenie, M., Alderton, J., Tsien, R. Y. & Steinhardt, R. A. Nature 315, 147–149 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Flucher, B. E. & Andrews, S. B. Cell Motil. Cytoskel. 25, 143–157 (1993).

    Article  CAS  Google Scholar 

  29. Fatatis, A. & Russell, J. T. Glia 5, 95–104 (1992).

    Article  CAS  Google Scholar 

  30. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis 2nd edn (North Holland, Amsterdam, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, X., Spitzer, N. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787 (1995). https://doi.org/10.1038/375784a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375784a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing