Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Locally layered convection inferred from dynamic models of the Earth's mantle

Abstract

THE structure of convection in the mantle is still the subject of considerable debate. The now standard modelling of the convective flow as driven in a viscous mantle by density anomalies derived from seismic tomography has successfully explained the longest-wavelength (degree 2 to 8) geoid anomalies and provided important information concerning the viscosity structure of the mantle1–8. With this approach, however, the predicted response of surface topography to convective stresses (the 'dynamic topography') has a typical magnitude of several kilometres, which does not conform with observations9–11. A possible source of this discrepancy lies in the severe underestimation, by tomography, of density anomalies due to deflections of the boundary between the upper and lower mantle, at 660 km depth. Here we model the mantle flow implied by seismically derived density heterogeneities, using an empirical method to account for the 660-km boundary topography. The predicted dynamic (surface) topography thus obtained is significantly reduced, to values that conform with the observations; in addition, the 660-km boundary topography appears to have a strong influence on the computed mantle circulation, inducing local layering of the convective flow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ricard, Y. & Vigny, C. J. geophys. Res. 94, 543–559 (1989).

    Google Scholar 

  2. Hager, B. H. & Richards, M. R. Phil. Trans. R. Soc. A328, 209–327 (1989).

    Article  ADS  Google Scholar 

  3. Forte, A. M. & Peltier, W. R. J. geophys. Res. 96, 20131–20159 (1991).

    Article  ADS  Google Scholar 

  4. King, S. D. & Masters, G. Geophys. Res. Lett. 19, 1551–1554 (1992).

    Article  ADS  Google Scholar 

  5. Zhang, S. & Christensen, U. Geophys. J. Int. 114, 531–547 (1993).

    Article  ADS  Google Scholar 

  6. Phipps Morgan, J. & Shearer, P. M. Nature 365, 506–511 (1993).

    Article  ADS  Google Scholar 

  7. Corrieu, V., Ricard, Y. & Froidevaux, C. Phys. Earth planet. Inter. 84, 3–13 (1994).

    Article  ADS  Google Scholar 

  8. Thoraval, C., Machetel, P. & Cazenave, A. Geophys. J. Int. 117, 566–573 (1994).

    Article  ADS  Google Scholar 

  9. Colin, P. & Fleitout, L. Geophys. Res. Lett. 17, 1961–1964 (1990).

    Article  ADS  Google Scholar 

  10. Cazenave, A. & Thoraval, C. Earth planet. Sci. Lett. 122, 207–219 (1994).

    Article  ADS  Google Scholar 

  11. Kido, M. & Seno, T. Geophys. Res. Lett. 21, 717–720 (1994).

    Article  ADS  Google Scholar 

  12. Tanimoto, T. & Zhang, Y. S. Geophys. Res. Lett. 17, 2405–2408 (1990).

    Article  ADS  Google Scholar 

  13. Cazenave, A., Souriau, A. & Dominh, K. Nature 18, 1257–1260 (1989).

    Google Scholar 

  14. Ito, E. & Katsura, T. Geophys. Res. Lett. 16, 425–428 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Su, W. & Dziewonski, A. M. Nature 352, 121–126 (1991).

    Article  ADS  Google Scholar 

  16. Jordan, T. H. Phil. Trans. R. Soc. A301, 359–373 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Chopelas, A. & Böehler, R. Geophys. Res. Lett. 19, 1347–1350 (1989).

    Article  ADS  Google Scholar 

  18. Dziewonski, A. M. & Anderson, D. L. Phys. Earth planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  19. Gripp, A. E. & Gordon, R. G. Geophys. Res. Lett. 17, 1109–1112 (1990).

    Article  ADS  Google Scholar 

  20. Van Der Hilst, R., Engdahl, R., Spakman, W. & Nolet, G. Nature 353, 37–43 (1991).

    Article  ADS  Google Scholar 

  21. Fukao, Y., Obayashi, M., Inoue, H. & Nenbai, M. J. geophys. Res. 97, 4809–4822 (1992).

    Article  ADS  Google Scholar 

  22. Shearer, P. M. Geophys. J. Int. 115, 878–904 (1993).

    Article  ADS  Google Scholar 

  23. Tanimoto, T. J. Phys. Earth 38, 493–509 (1990).

    Article  Google Scholar 

  24. Machetel, P. in Dynamics of Earth's Deep Interior and Earth Rotation (eds Le Mouël, J. L., Smylie, D. E. & Herring, T.) 167–179 (Geophys. Monogr. 72, Am. Geophysical Union, Washington DC, 1993).

    Google Scholar 

  25. Machetel, P., Thoraval, C. & Brunet, D. Phys. Earth planet. Inter. 88, 43–51 (1995).

    Article  ADS  Google Scholar 

  26. Machetel, P. & Weber, P. Nature 350, 55–57 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thoraval, C., Machetel, P. & Cazenave, A. Locally layered convection inferred from dynamic models of the Earth's mantle. Nature 375, 777–780 (1995). https://doi.org/10.1038/375777a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375777a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing