Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation

Abstract

ALTHOUGH phantom-limb pain is a frequent consequence of the amputation of an extremity, little is known about its origin1-4. On the basis of the demonstration of substantial plasticity of the somatosensory cortex after amputation5 or somatosensory deafferentation in adult monkeys6, it has been suggested that cortical reorganization could account for some non-painful phantom-limb phenomena in amputees and that cortical reorganization has an adaptive (that is, pain-preventing) function2,5,7,8. Theoretical and empirical work on chronic back pain9,10 has revealed a positive relationship between the amount of cortical alteration and the magnitude of pain, so we predicted that cortical reorganization and phantom-limb pain should be positively related. Using non-invasive neuromagnetic imaging techniques to determine cortical reorganization in humans11-13, we report a very strong direct relationship (r = 0.93) between the amount of cortical reorganization and the magnitude of phantom limb pain (but not non-painful phantom phenomena) experienced after arm amputation. These data indicate that phantom-limb pain is related to, and may be a consequence of, plastic changes in primary somatosensory cortex.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Jensen, T. S. & Rasmussen, P. in Textbook of Pain (eds Wall, P. & Melzack, R. A.) 651–666 (Churchill-Livingstone, Edinburgh, 1994).

    Google Scholar 

  2. 2

    Katz, J. Can. J. Psychiat. 37, 282–291 (1992).

    CAS  Article  Google Scholar 

  3. 3

    Melzack, R. A. Can. Psychol. 30, 1–16 (1989).

    Article  Google Scholar 

  4. 4

    Sherman, R. A., Arena, J. C., Sherman, C. J. & Ernst, J. C. Biof Self-Regul. 14, 267–280 (1989).

    CAS  Article  Google Scholar 

  5. 5

    Merzenich, M. et. al. J. comp. Neurol. 224, 591–605 (1984).

    CAS  Article  Google Scholar 

  6. 6

    Pons, T. et al. Science 252, 1857–1860 (1991).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Ramachandran, V., Rogers-Ramachandran, D. & Stewart, M. Science 258, 1159–1160 (1992).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Ramachandran, V., Stewart, M. & Rogers Ramachandran, D. Neuroreport 3, 583–586 (1992).

    CAS  Article  Google Scholar 

  9. 9

    Flor, H. & Birbaumer, N. Am. Pain Soc. J. 3, 118–127 (1994).

    Google Scholar 

  10. 10

    Flor, H. et al. in Recent Advances in Biomagnetism (eds Deecke, L., Baumgartner, C., Stroink, G. & Williamson, S. J.) (Elsevier, Amsterdam: in the press).

  11. 11

    Elbert, T. et al. Neuroreport 5, 2593–2597 (1994).

    CAS  Article  Google Scholar 

  12. 12

    Yang, T. et al. Neuroreport 5, 701–704 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Yang, T. et al. Nature 368, 592–593 (1994).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Willis, W. D. Jr in Proc. 7th World Congr. on Pain (eds Gebhart, G. F., Hammond, D. L. & Jensen, T. S.) 301–324 (IASP. Seattle, 1994).

  15. 15

    Pain and Central Nervous System Disease (ed. Casey, K. L.) (Raven, New York 1991).

  16. 16

    Lund, J. T., Sun, G. D. & Lamarre, Y. Science 265, 546–548 (1994).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Darian-Smith, C. & Gilbert, C. D. Nature 368, 737–740 (1994).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Gilbert, C. D. Curr. Opin. Neurobiol. 3, 100–103 (1993).

    CAS  Article  Google Scholar 

  19. 19

    Calford, M. B. & Tweedale, R. Proc. R. Soc. B. 243, 269–275 (1991).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Lütkenhöner, B. et al. Brain Topography (in the press).

  21. 21

    Kerns, R. D., Turk, D. C. & Rudy, T. E. Pain 23, 345–356 (1985).

    CAS  Article  Google Scholar 

  22. 22

    Flor, H., Rudy, T. E., Birbaumer, N., Streit, B. & Schugens, M. M. Der Schmerz 4, 82–87 (1990).

    CAS  Article  Google Scholar 

  23. 23

    Geissner, E. Die Schmerzempfindungsskala (Beltz, Weinheim, in the press).

  24. 24

    Melzack, R. A. Pain 1, 277–299 (1975).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Flor, H., Elbert, T., Knecht, S. et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375, 482–484 (1995). https://doi.org/10.1038/375482a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing