Synthetic molecules that fold into a pleated secondary structure in solution

Article metrics

Abstract

THE construction of synthetic molecules that fold or assemble predictably into large, well defined structures represents a fertile area of chemistry. Many supramolecular systems have been reported that self-assemble as a result of non-covalent interactions1-7; and the control of higher-order protein structure by de novo design has also been demonstrated8,9. Protein secondary structural motifs have also been stabilized by incorporating artificial groups that impose constraints on the folded architecture10-12. Here we describe the synthesis of molecules that will fold in water into a pleated structure, as a result of interactions between alternating electron-rich donor groups and electron-deficient acceptor groups. We verify the pleated structure using absorption and NMR spec-troscopy. Donor-acceptor interactions have been used previously to engineer specific supramolecular geometries2,13, and are energetically favourable in organic as well as in aqueous solutions. But whereas previously such interactions have been used to effect self-assembly of distinct molecules, our results show that they can also determine the secondary structure of complex synthetic molecules in solution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Lindsey, J. S. New J. Chem. 15, 153–180 (1991).

  2. 2

    Amabilino, D. B. et al. J. Am. chem. Soc. 117, 1271–1294 (1995).

  3. 3

    Whitesides, G. M., Mathias, J. P. & Seto, C. T. Science 254, 1312–1319 (1991).

  4. 4

    Lehn, J.-M. Angew. Chem. int. Edn engl. 29, 1304–1319 (1990).

  5. 5

    Chambron, J. C., Dietrich-Buchecker, C. O., Heitz, V., Nierengarten, J.-F. & Sauvage, J.-P. in Transition Metals in Supramolecular Chemistry (eds Fabbrizzi, L. & Poggi, A.) 371–390 (Kluwer Academic, Dordrecht, 1994).

  6. 6

    Ashton, P. R., Philp, D., Spencer, J. & Stoddart, J. F. J. chem. Soc., chem. Commun. 1677–1679 (1991).

  7. 7

    LaBrenz, S. R. & Kelly, J. W. J. Am. chem. Soc. 117, 1655–1656 (1995).

  8. 8

    Betz, S. F., Raleigh, D. P. & Degrado, W. F. Curr. Opin. struct. Biol. 3, 601–610 (1993).

  9. 9

    Quinn, T. P., Tweedy, N. B., Richardson, J. S., Williams, R. W. & Richardson, D. C. Proc. natn. Acad. Sci. U.S.A. 91, 8747–8751 (1994).

  10. 10

    Mutter, M. et al. J. Am. chem. Soc. 114, 1463–1470 (1992).

  11. 11

    Ghadiri, M. R., Soares, C. & Choi, C. J. Am. chem. Soc. 114, 825–831 (1992).

  12. 12

    Åkerfeldt, K. S., Kim, R. M., Comac, D., Groves, J. T., Lear, J. D. & DeGrado, W. F. J. Am. chem. Soc. 114, 9656–9657 (1992).

  13. 13

    Hunter, C. A. & Sanders, J. R. M. J. Am. chem. Soc. 112, 5525–5534 (1990).

  14. 14

    Hanna, M. W. & Ashbaugh, A. L. J. phys. Chem. 68, 811–816 (1964).

  15. 15

    Deranleau, D. A. J. Am. chem. Soc. 91, 4044–4054 (1969).

  16. 16

    Benniston, A. C., Harriman, A. & Lynch, V. M. Tetrahedron Lett. 35, 1473–1476 (1994).

  17. 17

    Cantor, R. C. & Schimmel, P. R. Biophysical Chemistry Part II 390–408 (Freeman, New York, 1980).

  18. 18

    Chudek, J. A., Foster, R. & Twiselton, D. R. J. chem. Soc. Perkin Trans. II 1385–1389 (1983).

  19. 19

    Barlos, K. et al. Tetrahedron Lett. 30, 3943–3946 (1989).

  20. 20

    Atherton, E. & Shepard, R. C. Solid Phase Peptide Synthesis (IRL, Oxford, 1989).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scott Lokey, R., Iverson, B. Synthetic molecules that fold into a pleated secondary structure in solution. Nature 375, 303–305 (1995) doi:10.1038/375303a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.