Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthetic molecules that fold into a pleated secondary structure in solution

Abstract

THE construction of synthetic molecules that fold or assemble predictably into large, well defined structures represents a fertile area of chemistry. Many supramolecular systems have been reported that self-assemble as a result of non-covalent interactions1-7; and the control of higher-order protein structure by de novo design has also been demonstrated8,9. Protein secondary structural motifs have also been stabilized by incorporating artificial groups that impose constraints on the folded architecture10-12. Here we describe the synthesis of molecules that will fold in water into a pleated structure, as a result of interactions between alternating electron-rich donor groups and electron-deficient acceptor groups. We verify the pleated structure using absorption and NMR spec-troscopy. Donor-acceptor interactions have been used previously to engineer specific supramolecular geometries2,13, and are energetically favourable in organic as well as in aqueous solutions. But whereas previously such interactions have been used to effect self-assembly of distinct molecules, our results show that they can also determine the secondary structure of complex synthetic molecules in solution.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Lindsey, J. S. New J. Chem. 15, 153–180 (1991).

    CAS  Google Scholar 

  2. Amabilino, D. B. et al. J. Am. chem. Soc. 117, 1271–1294 (1995).

    CAS  Article  Google Scholar 

  3. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Science 254, 1312–1319 (1991).

    ADS  CAS  Article  Google Scholar 

  4. Lehn, J.-M. Angew. Chem. int. Edn engl. 29, 1304–1319 (1990).

    Article  Google Scholar 

  5. Chambron, J. C., Dietrich-Buchecker, C. O., Heitz, V., Nierengarten, J.-F. & Sauvage, J.-P. in Transition Metals in Supramolecular Chemistry (eds Fabbrizzi, L. & Poggi, A.) 371–390 (Kluwer Academic, Dordrecht, 1994).

    Book  Google Scholar 

  6. Ashton, P. R., Philp, D., Spencer, J. & Stoddart, J. F. J. chem. Soc., chem. Commun. 1677–1679 (1991).

  7. LaBrenz, S. R. & Kelly, J. W. J. Am. chem. Soc. 117, 1655–1656 (1995).

    CAS  Article  Google Scholar 

  8. Betz, S. F., Raleigh, D. P. & Degrado, W. F. Curr. Opin. struct. Biol. 3, 601–610 (1993).

    CAS  Article  Google Scholar 

  9. Quinn, T. P., Tweedy, N. B., Richardson, J. S., Williams, R. W. & Richardson, D. C. Proc. natn. Acad. Sci. U.S.A. 91, 8747–8751 (1994).

    ADS  CAS  Article  Google Scholar 

  10. Mutter, M. et al. J. Am. chem. Soc. 114, 1463–1470 (1992).

    CAS  Article  Google Scholar 

  11. Ghadiri, M. R., Soares, C. & Choi, C. J. Am. chem. Soc. 114, 825–831 (1992).

    CAS  Article  Google Scholar 

  12. Åkerfeldt, K. S., Kim, R. M., Comac, D., Groves, J. T., Lear, J. D. & DeGrado, W. F. J. Am. chem. Soc. 114, 9656–9657 (1992).

    Article  Google Scholar 

  13. Hunter, C. A. & Sanders, J. R. M. J. Am. chem. Soc. 112, 5525–5534 (1990).

    CAS  Article  Google Scholar 

  14. Hanna, M. W. & Ashbaugh, A. L. J. phys. Chem. 68, 811–816 (1964).

    CAS  Article  Google Scholar 

  15. Deranleau, D. A. J. Am. chem. Soc. 91, 4044–4054 (1969).

    CAS  Article  Google Scholar 

  16. Benniston, A. C., Harriman, A. & Lynch, V. M. Tetrahedron Lett. 35, 1473–1476 (1994).

    CAS  Article  Google Scholar 

  17. Cantor, R. C. & Schimmel, P. R. Biophysical Chemistry Part II 390–408 (Freeman, New York, 1980).

    Google Scholar 

  18. Chudek, J. A., Foster, R. & Twiselton, D. R. J. chem. Soc. Perkin Trans. II 1385–1389 (1983).

  19. Barlos, K. et al. Tetrahedron Lett. 30, 3943–3946 (1989).

    CAS  Article  Google Scholar 

  20. Atherton, E. & Shepard, R. C. Solid Phase Peptide Synthesis (IRL, Oxford, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scott Lokey, R., Iverson, B. Synthetic molecules that fold into a pleated secondary structure in solution. Nature 375, 303–305 (1995). https://doi.org/10.1038/375303a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375303a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing