Observational evidence for chemical ozone depletion over the Arctic in winter 1991–92

Article metrics

Abstract

LONG-TERM depletion of ozone has been observed since the early 1980s in the Antarctic polar vortex, and more recently at mid-latitudes in both hemispheres, with most of the ozone loss occurring in the lower stratosphere1. Insufficient measurements of ozone exist, however, to determine decadal trends in ozone concentration in the Arctic winter. Several studies of ozone concentrations in the Arctic vortex have inferred that chemical ozone loss has occurred2–11; but because natural variations in ozone concentration at any given location can be large, deducing long-term trends from time series is fraught with difficulties. The approaches used previously have often been indirect, typically relying on relationships between ozone and long-lived tracers. Most recently Manney et al.11used such an approach, based on satellite measurements, to conclude that the observed ozone decrease of about 20% in the lower stratosphere in February and March 1993 was caused by chemical, rather than dynamical, processes. Here we report the results of a new approach to calculate chemical ozone destruction rates that allows us to compare ozone concentrations in specific air parcels at different times, thus avoiding the need to make assumptions about ozone/tracer ratios. For the Arctic vortex of the 1991-92 winter we find that, at 20 km altitude, chemical ozone loss occurred only between early January and mid February and that the loss is proportional to the exposure to sunlight. The timing and magnitude are broadly consistent with existing understanding of photochemical ozone-depletion processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Harris, N. R. P. et al. Scientific Assessment of Ozone Depletion: 1994 Ch. 1 (WMO Global Ozone Research and Monitoring Project, Report No. 37) (World Meteorological Organisation, Geneva, 1995).

  2. 2

    Hofmann, D. J. et al. Nature 340, 117–121 (1989).

  3. 3

    Schoeberi, M. R. et al. Geophys. Res. Lett. 17, 469–472 (1990).

  4. 4

    McKenna, D. S. et al. Geophys. Res. Lett. 17, 553–556 (1990).

  5. 5

    Hofmann, D. J. & Deshler, T. Nature 349, 300–305 (1991).

  6. 6

    Koike, M. et al. Geophys. Res. Lett. 18, 791–794 (1991).

  7. 7

    Kyrö, E. et al. J. geophys. Res. 97, 8083–8091 (1992).

  8. 8

    Proffitt M. H. et al. Science 261, 1150–1154 (1993).

  9. 9

    Braathen, G. O. et al. Geophys. Res. Lett. 21, 1407–1410 (1994).

  10. 10

    Larsen, N., Knudsen, B. M., Mikkelsen, I. St., Jørgensen, T. S. & Eriksen, P. Geophys. Res. Lett. 21, 1611–1614 (1994).

  11. 11

    Manney, G. L. et al. Nature 370, 429–434 (1994).

  12. 12

    Knudsen, B. M. & Carver, G. D. Geophys. Res. Lett. 21, 1199–1202 (1994).

  13. 13

    Kerr, J. B. et al. Atmosphere-Ocean 32, 685–716 (1994).

  14. 14

    Carver, G. D., Norton, W. A. & Pyle, J. A. Geophys. Res. Lett. 21, 1451–1454 (1994).

  15. 15

    Geleyn, J. F. & Hollingsworth, A. Beitr. Phys. Atmos. 52, 1–16 (1979).

  16. 16

    Morcrette, J. J. Tech. Memo. 165 (Res. Dep. Eur. Cent. for Medium Range Weather Fore-casts, Reading, UK, 1989).

  17. 17

    Morcrette, J. J. J. geophys. Res. 96, 9121–9132 (1991).

  18. 18

    Lutman, E. R., Toumi, R., Jones, R. L., Lary, D. J. & Pyle, J. A. Geophys. Res. Lett. 21, 1415–1418 (1994).

  19. 19

    Müller, R. et al. Geophys. Res. Lett. 21, 1427–1430 (1994).

  20. 20

    Browell, E. V. et al. Science 261, 1155–1158 (1993).

  21. 21

    Salawitch, R. J. et al. Science 261, 1146–1149 (1993).

  22. 22

    Hoskins, B. J., Mclntyre, M. E. & Robinson, A. W. Q. Jl R. met. Soc. 111, 877–946 (1985).

  23. 23

    Rosenfield, J. E., Newman, P. A. & Schoeberl, M. R. J. geophys. Res. 99, 16677–16689 (1994).

  24. 24

    Strahan, S. E., Rosenfield, J. E., Loewenstein, M., Podolske, J. R. & Weaver, A. J. geophys. Res. 99, 20713–20723 (1994).

  25. 25

    Farman, J. C., O'Neill, A. & Swinbank, R. Geophys. Res. Lett. 21, 1195–1198 (1994).

  26. 26

    Naujokat, B., Petzoldt, K., Labitzke, K. (Met. Inst. report Beilage zur Berliner Wetterkarte, SO 18/92, Berlin, 1992).

  27. 27

    Newman, P. A. et al. Science 261, 1130–1158 (1993).

  28. 28

    Godin, S. et al. Geophys. Res. Lett. 21, 1335–1338 (1994).

  29. 29

    Waters, J. W. et al. Nature 362, 597–602 (1993).

  30. 30

    Geophys. Res. Lett. 21, 1189–1490 (1994).

  31. 31

    Geophys. Res. Lett. 20, 2499–2578 (1993).

  32. 32

    Science 261, 1130–1158 (1993).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

von der Gathen, P., Rex, M., Harris, N. et al. Observational evidence for chemical ozone depletion over the Arctic in winter 1991–92. Nature 375, 131–134 (1995) doi:10.1038/375131a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.