Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of East Pacific Rise hydrothermal vent fluids following a volcanic eruption

Abstract

STUDIES of sea-floor hydrothermal vent fluids have shown them to have stable characteristics on a decade timescale1, with temperatures in the range 350 ± 30 °C (ref. 2) and chemistries2 that vary from vent to vent, which have most recently been interpreted to reflect phase separation within the hydrothermal system3á€-7. Here we report measurements of vent fluid temperature and chemistry from 9° 46.5′ N on the East Pacific Rise, which show unprecedented variability on timescales of only a week. Our measured temperatures range up to 403 °C, placing the fluids unequivocally in the vapour field at the sampling conditions. Consistent with the fluids being in the vapour phase are the lowest chlorinities and silica contents, and highest hydrogen sulphide contents, yet reported for sea-floor vent fluids. These unusual fluid characteristics are the result of a volcanic eruption having occurred at this site, within weeks of when the first measurements were made8. The hydrothermal system in the immediate post-eruptive period is thus characterized by previously unknown temperature and chemical characteristics, necessitating revisions to models of hydrothermal fluxes to the oceans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Campbell, A. C. et al. J. geophys. Res. 93, 4537–4549 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Von Damm, K. L. A. Rev. Earth planet. Sci. 18, 173–204 (1990).

    Article  ADS  Google Scholar 

  3. Bischoff, J. L. Science 207, 1465–1469 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Von Damm, K. L. J. geophys. Res. 93, 4551–4561 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Massoth, G. J. et al. Nature 340, 702–705 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Lilley, M. D. et al. Nature 364, 45–48 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Butterfield, D. A. et al. J. geophys. Res. 99, 9561–9583 (1994).

    Article  ADS  Google Scholar 

  8. Rubin, K. H., Macdougall, J. D. & Perfit, M. R. Nature 368, 841–844 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Haymon, R. M. et al. Earth planet. Sci. Lett. 119, 85–101 (1993).

    Article  ADS  Google Scholar 

  10. Fornari, D. J. et al. (abstr.) Eos 71, 621 (1990).

    Google Scholar 

  11. Bischoff, J. L. Am. J. Sci. 291, 309–338 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Bischoff, J. L. & Rosenbauer, R. J. Earth planet. Sci. Lett. 68, 172–180 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Shanks, W. C., Böhlke, J. K. & Seal, R. R. in Physical, Chemical, Biological, and Geological Interactions within Hydrothermal Systems Ch. 8 (eds Lupton, J., Mullineaux, L. & Zierenberg, R.) (Monogr., Am. Geophys. Un., Washington DC, 1995).

    Google Scholar 

  14. Von Damm, K. L. et al. Geochim. cosmochim. Acta 49, 2197–2220 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Von Damm, K. L., Bischoff, J. L. & Rosenbauer, R. J. Am. J. Sci. 291, 977–1007 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Seyfried, W. E. Jr, Ding, K. & Berndt, M. E. Geochim. cosmochim. Acta 55, 3559–3580 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Alt, J. C., Laverne, C. & Muehlenbachs, K. Init. Rep. DSDP Leg 83, 217–247 (1984).

  18. Fournier, R. O. Prof. Pap. US geol. Surv. 1350, 1487–1506 (1987).

    Google Scholar 

  19. Kent, G. M., Harding, A. J. & Orcutt, J. A. J. geophys. Res. 98, 13945–13969 (1993).

    Article  ADS  Google Scholar 

  20. Harding, A. J., Kent, G. M. & Orcutt, J. A. J. geophys. Res. 98, 13925–13944 (1994).

    Article  ADS  Google Scholar 

  21. Rosenberg, N. D., Spera, F. J. & Haymon, R. M. Earth planet. Sci. Lett. 116, 135–153 (1993).

    Article  ADS  Google Scholar 

  22. Von Damm, K. L., Oosting, S. E. & Buttermore, L. G. (abstr.) Eos 75, 618 (1994).

    Google Scholar 

  23. Kennedy, G. C. Econ. Geol. 45, 629–653 (1950).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damm, K., Oosting, S., Kozlowski, R. et al. Evolution of East Pacific Rise hydrothermal vent fluids following a volcanic eruption. Nature 375, 47–50 (1995). https://doi.org/10.1038/375047a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375047a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing