Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Independent neural mechanisms for bright and dark information in binocular stereopsis

Abstract

EARLY visual processing is organized into a number of independent channels. In the retina, increments and decrements of brightness are processed independently by different groups of neurons1. For psychophysical measurements of human vision, independence can be tested statistically. Using this criterion in a depth judgement task, we show here that, for binocular stereo vision, increments and decrements are treated independently, at least as far as the level at which information from the left and right eyes is first combined. At later stages of stereo processing, the information from the two channels is no longer independent. Because the signals for stereo vision are first combined at the visual cortex, these results suggest that the neural 'on' and 'off channels remain independent right up to early cortical stages. Theoretical studies of stereo vision have proposed that visual features in the views of the two eyes are matched on the basis of 'similarity'2. Our results show that stereo matching treats features as statistically independent (and therefore dissimilar) if they appear perceptually bright and dark relative to the background. If features differ perceptually but only in the degree of brightness or darkness, human stereo vision treats them as similar.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Schiller, P. H. Trends Neurosci. 15, 86–92 (1992).

    CAS  Article  Google Scholar 

  2. 2

    Marr, D. & Poggio, T. Proc. R. Soc. B204, 301–328 (1979).

    ADS  CAS  Google Scholar 

  3. 3

    Schiller, P. H., Sandell, J. L. & Maunsell, J. H. R. Nature 322, 824–825 (1986).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Dolan, R. P. & Schiller, P. H. Visual Neurosci. 11, 23–32 (1994).

    CAS  Article  Google Scholar 

  5. 5

    McConnell, S. K. & LeVay, S. Proc. natn. Acad. Sci. U.S.A. 81, 1590–1593 (1984).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Zahs, K. R. & Stryker, M. P. J. Neurophysiol. 59, 1410–1429 (1988).

    CAS  Article  Google Scholar 

  7. 7

    DeValois, K. K. Vision Res. 17, 209–215 (1977).

    CAS  Article  Google Scholar 

  8. 8

    Burton, G. J., Nagshineh, S. & Ruddock, K. H. Biol. Cyber. 27, 189–197 (1977).

    CAS  Article  Google Scholar 

  9. 9

    Bjorklund, R. A. & Magnussen, S. Perception 10, 511–518 (1981).

    CAS  Article  Google Scholar 

  10. 10

    Hanly, M. & MacKay, D. M. Expl Brain Res. 35, 37–46 (1979).

    CAS  Article  Google Scholar 

  11. 11

    Julesz, B. Foundations of Cyclopean Perception (Univ. Chicago Press, Chicago, 1971).

    Google Scholar 

  12. 12

    Barlow, H. B. Vision Res. 18, 637–650 (1978).

    CAS  Article  Google Scholar 

  13. 13

    Harris, J. M. & Parker, A. J. J. opt. Soc. Am. A1, 14–24 (1992).

    Article  Google Scholar 

  14. 14

    Harris, J. M. & Parker, A. J. Vision Res. 34, 2761–2772 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Burgess, A. & Barlow, H. B. Vision Res. 23, 811–820 (1983).

    CAS  Article  Google Scholar 

  16. 16

    Barlow, H. B. & Reeves, B. C. Vision Res. 19, 783–793 (1979).

    CAS  Article  Google Scholar 

  17. 17

    Pollard, S. B., Mayhew, J. E. W. & Frisby, J. P. Perception 14, 449–470 (1985).

    CAS  Article  Google Scholar 

  18. 18

    Marr, D. & Poggio, T. Science 194, 283–287 (1976).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Baker, H. H. & Binford, T. O. Proc. 7th Int. Joint Conf. Artificial Intelligence 631–636 (1981).

  20. 20

    von Helmholtz, H. Handbook of Physiological Optics 3rd edn (1910, translated 1925 by Southall, J.) (Dover Publications, New York, 1953).

    Google Scholar 

  21. 21

    Kaufman, L. & Pitblado, C. B. Percept. Psychophys. 6, 10–12 (1969).

    Article  Google Scholar 

  22. 22

    Watt, R. J. & Morgan, M. J. Vision Res. 25, 1661–1674 (1985).

    CAS  Article  Google Scholar 

  23. 23

    Levi, D. M. & Westheimer, G. J. opt. Soc. Am. A4, 1304–1313 (1987).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Levi, D. M., Jiang, B.-C. & Klein, S. A. Vision Res. 30, 1735–1750 (1990).

    CAS  Article  Google Scholar 

  25. 25

    Edwards, M. & Badcock, D. R. Vision Res. 34, 2849–2858 (1994).

    CAS  Article  Google Scholar 

  26. 26

    Morgan, M. J. & Glennerster, A. Vision Res. 31, 2075–2083 (1991).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harris, J., Parker, A. Independent neural mechanisms for bright and dark information in binocular stereopsis. Nature 374, 808–811 (1995). https://doi.org/10.1038/374808a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing