The major evolutionary transitions

Abstract

There is no theoretical reason to expect evolutionary lineages to increase in complexity with time, and no empirical evidence that they do so. Nevertheless, eukaryotic cells are more complex than prokaryotic ones, animals and plants are more complex than protists, and so on. This increase in complexity may have been achieved as a result of a series of major evolutionary transitions. These involved changes in the way information is stored and transmitted.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Maynard Smith, J. & Szathmáry, E. The Major Transitions in Evolution (Freeman, Oxford, 1995).

    Google Scholar 

  2. 2

    Margulis, L. Symbiosis in Cell Evolution (Freeman, San Francisco, 1981).

    Google Scholar 

  3. 3

    Smith, A. The Wealth of Nations (1777).

  4. 4

    Rensch, B. Evolution above the Species Level (Wiley, New York, 1966).

    Google Scholar 

  5. 5

    Cavalier-Smith, T. (ed.) The Evolution of Genome Size (Wiley, Chichester, 1985).

  6. 6

    Bonner, J. T. The Evolution of Complexity by Means of Natural Selection (Princeton University Press, Princeton, NJ, 1988).

    Google Scholar 

  7. 7

    Crow, J. F. BioEssays 13, 305–312 (1991).

    CAS  Article  Google Scholar 

  8. 8

    Charlesworth, B., Sniegowski, P. & Stephan, W. Nature 371, 215–220 (1994).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Hurst, L. Proc. R. Soc. Lond. B 248, 135–140 (1992).

    ADS  Article  Google Scholar 

  10. 10

    Maynard Smith, J. The Evolution of Sex (Cambridge University Press, Cambridge, 1978).

    Google Scholar 

  11. 11

    Wilson, E. O. Sociobiology: The New Synthesis (Belknap, Harvard University Press, Cambridge, Massachusetts, 1975).

    Google Scholar 

  12. 12

    Cavalier-Smith, T. Ann. N. Y. Acad. Sci. 503, 17–54 (1987).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Williams, G. C. Adaptation and Natural Selection (Princeton University Press, Princeton, NJ, 1966).

    Google Scholar 

  14. 14

    Dawkins, R. The Selfish Gene (Oxford University Press, Oxford, 1976).

    Google Scholar 

  15. 15

    Hamilton, W. D. J. theor. Biol. 7, 1–52 (1964).

    CAS  Article  Google Scholar 

  16. 16

    Hurst, L. D. & Hamilton, W. D. Proc. R. Soc. Lond. B 247, 189–194 (1992).

    ADS  Article  Google Scholar 

  17. 17

    Hutson, V. & Law, R. Proc. R. Soc. Lond. B 263, 43–51 (1993).

    ADS  Google Scholar 

  18. 18

    Szathmáry, E. & Demeter, L. J. theor. Biol. 128, 463–486 (1987).

    Article  Google Scholar 

  19. 19

    Szathmáry, E. Oxf. Surv. Evol. Biol. 6, 169–205 (1989).

    Google Scholar 

  20. 20

    Szathmáry, E. Trends Ecol. Evol. 4, 200–204 (1989).

    Article  Google Scholar 

  21. 21

    Wilson, D. S. & Sober, E. J. theor. Biol. 136, 337–356 (1989).

    CAS  Article  Google Scholar 

  22. 22

    Leigh, E. G. Trends Ecol. Evol. 6, 257–262 (1991).

    Article  Google Scholar 

  23. 23

    Maynard Smith, J. Proc. R. Soc. Lond. B 219, 315–325 (1983).

    ADS  Google Scholar 

  24. 24

    Leigh, E. G. Adaptation and Diversity (Freeman, Cooper and Co., San Francisco, 1971).

    Google Scholar 

  25. 25

    Bell, G. in The Origin and Early Evolution of Sex (eds Halvorson, H. O. & Mornoy, A.) 221–256 (Liss, New York, 1985).

    Google Scholar 

  26. 26

    Kirk, D. L. Trends Genet. 4, 32–36 (1988).

    CAS  Article  Google Scholar 

  27. 27

    Koufopanou, V. Am. Nat. 143, 907–931 (1994).

    Article  Google Scholar 

  28. 28

    Buss, L. The Evolution of Individuality (Princeton University Press, Princeton, NJ, 1987).

    Google Scholar 

  29. 29

    Molnár, I. Abstr. botanica (Budapest) 17, 207–224 (1993).

    Google Scholar 

  30. 30

    Kacser, H. & Beeby, R. J. molec. Evol. 20, 38–51 (1984).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Joyce, G. Nature 338, 217–224 (1989).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Charnov, E., Maynard Smith, J. & Bull, J. J. Nature 263, 125–126 (1976).

    ADS  Article  Google Scholar 

  33. 33

    Ycas, M. Proc. natn. Acad. Sci. U.S.A. 41, 714–716 (1955).

    ADS  CAS  Article  Google Scholar 

  34. 34

    Gánti, T. A Theory of Biochemical Supersystems (Akatiémiai Kiadó, Budapest and University Park Press, Baltimore, 1979).

    Google Scholar 

  35. 35

    Wächtershäuser, G. Microbiol. Rev. 52, 452–484 (1988).

    PubMed  PubMed Central  Google Scholar 

  36. 36

    Joyce, G. F., Schwartz, A. W., Orgel, L. E. & Miller, L. S. Proc. natn. Acad. Sci. U.S.A 84, 4398–4402 (1987).

    ADS  CAS  Article  Google Scholar 

  37. 37

    von Kiedrowski, G. Angew. Chem. Inter. Ed. 25, 923–935 (1986).

    Article  Google Scholar 

  38. 38

    Szathmáry, E. & Gladkih, I. J. theor. Biol. 138, 55–58 (1989).

    Article  Google Scholar 

  39. 39

    Szathmáry, E. Trends Ecol. Evol. 6, 366–370 (1991).

    Article  Google Scholar 

  40. 40

    von Kiedrowski, G. Bioorg. Chem. Frontiers 3, 113–146 (1993).

    CAS  Article  Google Scholar 

  41. 41

    Szathmáry, E. Proc. natn. Acad. Sci. U.S.A. 90, 9916–9920 (1993).

    ADS  Article  Google Scholar 

  42. 42

    Benner, S. A. et al. Cold Spring Harbor Symp. quant. Biol. 52, 56–63 (1987).

    Article  Google Scholar 

  43. 43

    Lazcano, A., Guerrero, R., Margulis, L. & Oró, J. J. molec. Evol. 27, 283–290 (1988).

    ADS  CAS  Article  Google Scholar 

  44. 44

    Jablonka, E. J. theor. Biol. 170, 301–309 (1994).

    CAS  Article  Google Scholar 

  45. 45

    Jablonka, E. & Lamb, M. J. Epigenetic Inheritance and Evolution: The Lamarckian Dimension (Oxford University Press, Oxford, 1995).

    Google Scholar 

  46. 46

    Szathmáry, E. J. theor. Biol. 169, 125–132 (1994).

    Article  Google Scholar 

  47. 47

    Wolpert, L. Biol. J. Linn. Soc. 39, 109–124 (1990).

    Article  Google Scholar 

  48. 48

    Bickerton, D. Language and Species (University of Chicago Press, Chicago, 1990).

    Google Scholar 

  49. 49

    Chomsky, N. Aspects of the Theory of Syntax (MIT Press, Cambridge, MA, 1965).

    Google Scholar 

  50. 50

    Pinker, S. The Language Instinct—The New Science of Language and Mind (Penguin, London, 1994).

    Google Scholar 

  51. 51

    Pinker, S. & Bloom, P. Behav. Brain. Sci. 13, 707–784 (1990).

    Article  Google Scholar 

  52. 52

    Hinton, G. E. & Nowlan, S. J. Complex Syst. 1, 495–502 (1987).

    Google Scholar 

  53. 53

    Gopnik, M. Nature 344, 715 (1990).

    ADS  CAS  Article  Google Scholar 

  54. 54

    Gánti, T. The Principle of Life (OMIKK, Budapest, 1987).

    Google Scholar 

  55. 55

    Szathmáry, E. Nature 344, 115 (1990).

    ADS  Article  Google Scholar 

  56. 56

    Prudent, J. R., Uno, T. & Schultz, P. G. Science 264, 1924–1927 (1994).

    ADS  CAS  Article  Google Scholar 

  57. 57

    Famulok, M. J. Am. chem. Soc. (in the press).

  58. 58

    Jeon, K. W. in Symbiosis as a Source of Evolutionary Innovation (eds Margulis, L. & Fester, R.) 118–131 (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  59. 59

    Rasbach, H., Rasbach, K., Reichstein, J. J. & Vida, G. Ber. Bayer, Bot. Ges. 50, 23–27 (1979).

    Google Scholar 

  60. 60

    Eigen, M. Naturwissenschaften 58, 465–523 (1971).

    ADS  CAS  Article  Google Scholar 

  61. 61

    Eigen, M. & Schuster, P. Naturwissenschaften 64, 541–565 (1977).

    ADS  CAS  Article  Google Scholar 

  62. 62

    Maynard Smith, J. & Szathmáry, E. J. theor. Biol. 164, 437–446 (1993).

    Article  Google Scholar 

  63. 63

    Szathmáry, E. & Maynard Smith, J. J. theor. Biol. 164, 447–454 (1993).

    Article  Google Scholar 

  64. 64

    Weiner, M. & Maizels, N. Proc. natn. Acad. Sci. U.S.A. 91, 6729–6734 (1994).

    ADS  Article  Google Scholar 

  65. 65

    Gánti, T. BioSystems 7, 189–195 (1975).

    Article  Google Scholar 

  66. 66

    Koch, A. L. J. molec. Evol. 21, 270–277 (1985).

    ADS  CAS  Article  Google Scholar 

  67. 67

    Tarumi, K. & Schwegler, H. Bull. Math. Biol. 47, 307–320 (1987).

    Article  Google Scholar 

  68. 68

    Cairns-Smith, A. G. & Walker, G. L. BioSystems 5, 173–186 (1974).

    CAS  Article  Google Scholar 

  69. 69

    Wächtershäuser, G. Progr. Biophys. molec. Biol. 58, 85–201 (1992).

    Article  Google Scholar 

  70. 70

    Bachmann, P. A., Luigi, P. L. & Lang, J. Nature 357, 57–59 (1992).

    ADS  CAS  Article  Google Scholar 

  71. 71

    King, G. A. M. BioSystems 13, 23–45 (1980).

    CAS  Article  Google Scholar 

  72. 72

    Wächtershäuser, G. Proc. natn. Acad. Sci. U.S.A. 91, 4283–4287 (1994).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Szathmáry, E., Smith, J. The major evolutionary transitions. Nature 374, 227–232 (1995). https://doi.org/10.1038/374227a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.