Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench

Abstract

AT the Tonga trench, old Pacific sea floor subducts at a rapid rate below the Indo-Australia plate, generating most of the world's deep earthquakes (focal depth >300 km)1,2 and producing a deep slab of former oceanic lithosphere. The seismogenic part of the slab has been mapped in detail3,4, but its fate has remained enigmatic. Here I present evidence from seismic tomography that the Pacific plate descends deep into the Earth's mantle along a trajectory that is more complex than previously thought. In the north, the slab deflects in the transition zone (between about 400 and 700 km depth) before continuing into the lower mantle (below 700 km). Further south, penetration into the lower mantle occurs without a kink. The slab morphology can be explained in terms of the recent tectonic evolution of the subduction system, and reconciles pre-existing evidence from this region for both local horizontal flow in the transition zone2–8 and slab penetration into the lower mantle9–12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Frohlich, C. A. Rev. Earth planet. Sci. 17, 227–254 (1989).

    Article  ADS  Google Scholar 

  2. Sykes, L. R. J. geophys. Res. 71, 2981–3006 (1966).

    Article  ADS  Google Scholar 

  3. Billington, S. thesis, Cornell Univ. (1980).

  4. Chiu, J.-M., Isacks, B. L. & Cardwell, R. K. Geophys. J. Int. 106, 99–112 (1991).

    Article  ADS  Google Scholar 

  5. Oliver, J. & Isacks, B. L. J. geophys. Res. 72, 4259–4275 (1967).

    Article  ADS  Google Scholar 

  6. Isacks, B. L., Oliver, J. & Sykes, L. R. J. geophys Res. 73, 5855–5899 (1968).

    Article  ADS  Google Scholar 

  7. Baranzangi, M., Isacks, B. L., Oliver J., Dubois, J. & Pascal, G. Nature 242, 98–101 (1973).

    Article  ADS  Google Scholar 

  8. Giardini, D. & Woodhouse, J. H. Nature 307, 505–509 (1984); Nature 319, 551–555 (1986).

    Article  ADS  Google Scholar 

  9. Fischer, K. M., Creager K. C. & Jordan, T. H. J. geophys. Res. 96, 14403–14427 (1991).

    Article  ADS  Google Scholar 

  10. Fischer, K. M. & Jordan, T. H. J. geophys. Res. 96, 14429–14444 (1991).

    Article  ADS  Google Scholar 

  11. Zhou, H-.W. Phys. Earth planet. Int. 61, 199–229 (1990).

    Article  ADS  Google Scholar 

  12. Frohlich, C. & Barazangi, M. Phys. Earth planet. Int. 21, 1–14 (1980).

    Article  ADS  Google Scholar 

  13. Jarrard, R. D. Rev. Geophys. 24, 218–284 (1986).

    Article  ADS  Google Scholar 

  14. Richter, F. M. J. geophys. Res. 84, 6783–6795 (1979).

    Article  ADS  Google Scholar 

  15. Hamburger, M. W. & Isacks, B. L. J. geophys. Res. 92, 13841–13854 (1987).

    Article  ADS  Google Scholar 

  16. Van der Hilst, R. D., Engdahl, E. R., Spakman, W. & Nolet, G. Nature 353, 37–43 (1991).

    Article  ADS  Google Scholar 

  17. Van der Hilst, R. D. & Engdahl, E. R. Phys. Earth planet. Inter. 75, 39–53 (1992).

    Article  ADS  Google Scholar 

  18. Kennett, B. L. N. & Engdahl, E. R. Geophys. J. Int. 105, 848–854 (1991).

    Article  Google Scholar 

  19. Vasco, D. W., Johnson, L. R., Pulliam, R. J. & Earle, P. S. J. geophys. Res. 99, 13727–13755 (1994).

    Article  ADS  Google Scholar 

  20. Richards, M. A. & Wicks, C. W. Geophys. J. Int. 101, 1–35 (1990).

    Article  ADS  Google Scholar 

  21. Gurnis, M. & Hager, B. H. Nature 335, 317–321 (1988).

    Article  ADS  Google Scholar 

  22. Van der Hilst, R. D. & Seno, T. Earth. planet. Sci. Lett. 120, 395–407 (1993).

    Article  ADS  Google Scholar 

  23. Garfunkel, Z., Anderson, C. A. & Schubert, G. J. geophys. Res. 91, 7205–7224 (1986).

    Article  ADS  Google Scholar 

  24. Kincaid, C. & Olson, P. J. geophys. Res. 92, 13832–13840 (1987).

    Article  ADS  Google Scholar 

  25. Davies, G. F. Earth planet. Sci. Lett. (submitted).

  26. Ringwood, A. E. & Irifune, T. Nature 331, 131–136 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Zhong, S. & Gurnis, M. Science (in the press).

  28. Griffiths, R. W., Hackney, R. & Van der Hilst, R. D. Earth planet. Sci. Lett. (submitted).

  29. Griffiths, R. W. & Turner, J. S. Earth planet. Sci. Lett. 90, 467–477 (1988).

    Article  ADS  Google Scholar 

  30. Collins, W. J. & Vernon, R. H. Tectonophysics 235, 249–275 (1994).

    Article  ADS  Google Scholar 

  31. Caritat, P. de & Braun, J. J. Geodynamics 16, 241–281 (1992).

    Article  Google Scholar 

  32. Karig, D. E. J. geophys. Res. 79, 239–254 (1970).

    Article  ADS  Google Scholar 

  33. Weissel, J. K., Hayes, D. E. & Herron, E. M. Mar. Geol. 25, 231–277 (1977).

    Article  Google Scholar 

  34. Crook, K. A. W. & Belbin, L. J. geol. Soc. Aust. 25, 23–40 (1978).

    Article  Google Scholar 

  35. Malahoff, A., Feden, R. H. & Fleming, H. S. J. geophys. Res. 87, 4109–4125 (1982).

    Article  ADS  Google Scholar 

  36. Kamp, P. J. J. Tectonophysics 121, 225–251 (1986).

    Article  ADS  Google Scholar 

  37. Molnar, P., Atwater, T., Mammerickx, J. & Martin, S. M. Geophys. J. R. ast. Soc. 40, 383–420 (1975).

    Article  ADS  Google Scholar 

  38. Walcott, R. I. Phil. Trans. R. Soc. A321, 163–181 (1987).

    Article  ADS  Google Scholar 

  39. Sclater, J., Hawkins, J., Mammerickx, J. & Chase, C. Geol. Soc. Am. Bull. 83, 505–518 (1972).

    Article  ADS  CAS  Google Scholar 

  40. Hamburger, M. W. & Isacks, B. L. Nature 332, 599–604 (1988).

    Article  ADS  Google Scholar 

  41. Parson, L. M. et al. Geology 18, 470–473 (1990).

    Article  ADS  Google Scholar 

  42. Spakman, W. & Nolet, G. in Mathematical Geophysics (eds Vlaar, N. J., Nolet, G., Wortel, M. J. R. & Cloetingh, S. A. P. L.) 155–188 (Reidel, Dordrecht, 1988).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Hilst, R. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature 374, 154–157 (1995). https://doi.org/10.1038/374154a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374154a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing