Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High current densities above 100 K in the high-temperature superconductor HgBa2CaCu2O6+δ

Abstract

THE recent discovery1,2 of a family of mercury-based copper oxide superconductors having transition temperatures1–3 above 130 K is of considerable technological interest. But the viability of high-temperature superconductors for many applications will ultimately depend on the size of the current density, Jc, that they are able to support, not only at high temperatures, but also in high magnetic fields. For the cuprate superconductors, and in particular for Hg-based materials, the combination of high transition temperature1–3 and large mass anisotropy implies that the transport properties will be intrinsically limited by large thermal fluctuations and short superconducting coherence lengths4. Here we report that high-quality c-axis-oriented epitaxial films of the compound HgBa 2 CaCu 6 O 6 + δ (Hg-1212; ref. 5) can support large in-plane current densities at temperatures higher than has been achieved for other superconductors. In low magnetic fields oriented normal to the film surface, we find Jc107 A cm−2 at 5 K and Jc 105 A cm−2 at 110 K, at least an order of magnitude larger than for Bi- or Tl-based films6–11. For in-plane magnetic fields, the critical current (108 A cm−2) is close to the theoretical limit even at high fields, indicative of strong intrinsic pinning in this compound.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Putilin, S. N., Antipov, E. V., Chmaissem, O. & Marezio, M. Nature 362, 226–228 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Schilling, A., Cantoni, M., Guo, J. D. & Ott, H. R. Nature 363, 56–58 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Meng, R. L. et al. Physica C214, 307–312 (1993).

    Article  CAS  Google Scholar 

  4. Blatter, G. et al. Rev. mod. Phys. (in the press).

  5. Tsuei, C. C., Gupta, A., Trafas, G. & Mitzi, D. Science 263, 1259–1261 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Endo, K., Yamasaki, H., Misawa, S., Yoshida, S. & Kajimura, K. Nature 355, 327–328 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Yamasaki, H. et al. Phys. Rev. Lett. 70, 3331–3334 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Schmitt, P., Kummeth, P., Schultz, L. & Saemann-Ischenko, G. Phys. Rev. Lett. 67, 267–270 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Chu, M. L. et al. Appl. Phys. Lett. 59, 1123–1125 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Ren, Z. F., Wang, C. A. & Wang, J. H. Appl. Phys. Lett. 65, 237–239 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Kawasaki, M. et al. Appl. Phys. Lett. 62, 417–419 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Campbell, A. M. & Evetts, J. E. Adv. Phys. 21, 199–429 (1972).

    Article  ADS  CAS  Google Scholar 

  13. Gyorgy, E. M., van Dover, R. B., Jackson, K. A., Schneemeyer, L. F. & Waszczak, J. V. Appl. Phys. Lett. 55, 283–285 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Umezawa, A. et al. Nature 364, 129–131 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Christen, D. K. & Thompson, J. R. Nature 364, 98–99 (1993).

    Article  ADS  Google Scholar 

  16. Gupta, A., Sun, J. Z. & Tsuei, C. C. Science 265, 1075–1077 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Huang, Z. J., Xue, Y. Y., Meng, R. L. & Chu, C. W. Phys. Rev. B49, 4218–4221 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Welp, U. et al. Appl. Phys. Lett. 63, 693–695 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Kes, P. H., Aarts, J., Vinokur, V. M. & van der Beek, C. J. Phys. Rev. Lett. 64, 1063–1066 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Feigel'man, M. V., Geshkenbein, V. B. & Larkin, A. I. Physica C167, 177–187 (1990).

    Article  Google Scholar 

  21. Farrell, D. E. et al. Phys. Rev. Lett. 63, 782–785 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Martinez, J. C. et al. Phys. Rev. Lett. 69, 2276–2279 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Kleiner, R. & Müller, P. Phys. Rev. B49, 1327–1341 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Thompson, J. R. et al. Phys. Rev. B48, 14031–14034 (1993).

    Article  CAS  Google Scholar 

  25. Tachiki, M. & Takahashi, S. Solid St. Commun. 70, 291–295 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krusin-Elbaum, L., Tsuei, C. & Gupta, A. High current densities above 100 K in the high-temperature superconductor HgBa2CaCu2O6+δ. Nature 373, 679–681 (1995). https://doi.org/10.1038/373679a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373679a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing