Dominant influence of atmospheric circulation on snow accumulation in Greenland over the past 18,000 years


PROJECTIONS of sea-level rise due to greenhouse warming often involve the assumption that increased water vapour pressure will enhance snow accumulation in cold regions of ice sheets, partially offsetting the increased melting of low-latitude and low-altitude ice1–3. To test whether this has been true in the past, we compare accumulation rates4 and temperatures derived from the oxygen isotope composition5 of ice in the deep core obtained by the Greenland Ice Sheet Project II (GISP2). We find that atmospheric circulation, not temperature, seems to have been the primary control on snow accumulation in central Greenland over the past 18,000 years. During both warm (Holocene) and cold (Younger Dryas, Last Glacial Maximum) climate regimes, the sensitivity of accumulation to temperature changes is less than expected if accumulation is controlled thermodynamically by the ability of warmer air to deliver more moisture. During transitions between warm and cold climate states, in contrast, accumulation varies more than can be explained in purely thermodynamic terms, probably because of changes in storm tracks. Thus, in a world warmed by the greenhouse effect, circulation changes may be more important than direct temperature effects in determining snow accumulation in Greenland and its contribution to sea-level change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Wigley, T. M. L. & Raper, S. C. B. Nature 357, 293–300 (1992).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Oerlemans, J. Holocene 1, 40–49 (1991).

    ADS  Article  Google Scholar 

  3. 3

    Peel, D. A. Weather 46, 95–102 (1991).

    ADS  Article  Google Scholar 

  4. 4

    Alley, R. B. et al. Nature 362, 527–529 (1993).

    ADS  Article  Google Scholar 

  5. 5

    Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J. & Jouzel, J. Nature 366, 552–554 (1993).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Taylor, K. C. et al. J. Glaciol. 38, 325–332 (1992).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Ram, M. & Illing, M. J. Glaciol. (in the press).

  8. 8

    Schøtt, C., Waddington, E. D. & Raymond, C. F. J. Glaciol. 38, 162–168 (1992).

    ADS  Article  Google Scholar 

  9. 9

    Taylor, K. C. et al. Nature 366, 549–552 (1993).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Cuffey, K. M., Alley, R. B., Grootes, P. M. & Anandakrishnan, S. Palaeogeogr. Palaeoclimatol. Palaeoecol. 98, 265–268 (1992).

    Article  Google Scholar 

  11. 11

    Cuffey, K. M., Alley, R. B., Grootes, P. M., Bolzan, J. M. & Anandakrishnan, S. J. Glaciol. 40, 341–349 (1994).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Dansgaard, W. et al. Nature 364, 218–220 (1993).

    ADS  Article  Google Scholar 

  13. 13

    Gundestrup, N. S., Dahl-Jensen, D., Johnson, S. J. & Rossi, A. Cold Regions Sci. Technol. 21, 399–402 (1993).

    Article  Google Scholar 

  14. 14

    Johnsen, S. J., Dansgaard, W. & White, J. W. C. Tellus 41B, 452–468 (1989).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Dansgaard, W., White, J. W. C. & Johnsen, S. J. Nature 339, 532–534 (1989).

    ADS  Article  Google Scholar 

  16. 16

    Charles, C. D., Rind, D., Jouzel, J., Koster, R. D. & Fairbanks, R. G. Science 263, 508–511 (1994).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Rind, D., Peteet, D., Broecker, W. S., Mclntyre, A. & Ruddiman, W. Clim. Dyn. 1, 3–33 (1986).

    Article  Google Scholar 

  18. 18

    Fisher, D. A. in The Last Deglaciation: Absolute and Radiocarbon Chronologies (eds Bard, E. & Broecker, W. S.) 267–293 (NATO ASI Ser. I, Vol. 2, Springer, Berlin, 1992).

    Google Scholar 

  19. 19

    Robin, G. de Q. Phil. Trans. R. Soc. B280, 143–168 (1977).

    Article  Google Scholar 

  20. 20

    Jouzel, J. et al. Quat. Res. 31, 135–150 (1989).

    CAS  Article  Google Scholar 

  21. 21

    Fisher, D. A. et al. Nature 301, 205–209 (1983).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Clausen, H. B., Gundestrup, N. S., Johnsen, S. J., Bindschadler, R. & Zwally, H. J. Ann. Glaciol. 10, 10–15 (1988).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Benoist, J. P., Jouzel, J., Lorius, C., Merlivat, L. & Pourchet, M. Ann. Glaciol. 3, 17–22 (1992).

    ADS  Article  Google Scholar 

  24. 24

    Kapsner, W. R. thesis, Pennsylvania State Univ. (1994).

  25. 25

    Reeh, N. et al. J. Glaciol. 20, 27–30 (1978).

    ADS  Article  Google Scholar 

  26. 26

    Dahl-Jensen, D., Johnsen, S. J., Hammer, C. U., Clausen, H. B. & Jouzel, in Ice in the Climate System (ed. Peltier, W. R.) 517–532 (NATO ASI Ser I, Vol. 12, Springer, Berlin, 1993).

    Google Scholar 

  27. 27

    Bromwich, D. H., Robasky, F. M., Keen, R. A. & Bolzan, J. F. Clim. 6, 1253–1268 (1993).

    ADS  Article  Google Scholar 

  28. 28

    Serreze, M. C., Box, J. E., Barry, R. G. & Walsh, J. E. Met. Atmos. Phys. 51, 147–164 (1993).

    Article  Google Scholar 

  29. 29

    Fisher, D. A. Cold Regions Sci. Technol. 21, 61–77 (1992).

    Article  Google Scholar 

  30. 30

    Zwally, H. J. Science 246, 1589–1591 (1989).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Mayewski, P. A. et al. Science 261, 195–197 (1993).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Broecker, W. S. & Denton, G. H. Geochim. cosmochim. Acta 53, 2465–2501 (1989).

    ADS  CAS  Article  Google Scholar 

  33. 33

    Warrick, R. & Oerlemans, J. in Climate Change (eds Houghton, J. T., Jenkins, G. J. & Ephraums, J. J.) 257–281 (Cambridge Univ. Press, 1990).

    Google Scholar 

  34. 34

    Bromwich, D. H. & Robasky, F. M. Met. Atmos. Phys. 51, 259–274 (1993).

    Article  Google Scholar 

  35. 35

    Meese, D. A. et al. Science (in the press).

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kapsner, W., Alley, R., Shuman, C. et al. Dominant influence of atmospheric circulation on snow accumulation in Greenland over the past 18,000 years. Nature 373, 52–54 (1995).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing