Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria

Abstract

MANY crude oil constituents are biodegradable in the presence of oxygen; however, a substantial anaerobic degradation has never been demonstrated1,2. An unusually low content of n-alkanes in oils of certain deposits is commonly attributed to selective utilization of these hydrocarbons by aerobic microorganisms3,4. On the other hand, oil wells and production fluids were shown to harbour anaerobic sulphate-reducing bacteria5–8, but their actual electron donors and carbon sources were unknown. On the basis of nutritional properties of various bacterial isolates it was assumed that fatty acids and H2 are potential electron donors for sulphate reduction in situ5–8. Here we demonstrate that hydrocarbons in crude oil are used directly by sulphate-reducing bacteria growing under strictly anoxic conditions. A moderately thermophilic pure culture selectively utilizesn-alkanes in oil for sulphate reduction to sulphide. In addition, a mesophilic sulphate-reducing enrichment culture is shown to oxidize alkylbenzenes in oil. Thus, sulphate-reducing bacteria utilizing aliphatic and aromatic hydrocarbons as electron donors may present a significant source of sulphide in oil deposits and oil production plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Atlas, R. M. Microbiol. Rev. 45, 180–209 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Leahy, J. & Colwell, R. R. Microbiol. Rev. 54, 305–315 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tissot, B. P. & Welte, D. H. Petroleum Formation and Occurrence 2nd edn (Springer, Berlin, New York, 1984).

    Book  Google Scholar 

  4. Blanc, P. & Connan, J. in Applied Petroleum Geochemistry (ed. Bordenave, M. L.) 151–174 (Editions Technip, Paris, 1993).

    Google Scholar 

  5. Nazina, T. N., Rozanova, E. P. & Kuznetsov, S. I. Geomicrobiol. J. 4, 103–130 (1985).

    Article  CAS  Google Scholar 

  6. Cord-Ruwisch, R., Kleinitz, W. & Widdel, F. J. Petrol. Technol. 97–106 (January 1987).

  7. Rosnes, J. T., Torsvik, T. & Lien, T. Appl. environ. Microbiol. 57, 2302–2307 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Stetter, K. O. et al. Nature 365, 743–745 (1993).

    Article  ADS  Google Scholar 

  9. Widdel, F. & Bak, F. in The Prokaryotes 2nd edn Vol. 4 (eds Balows, A., Trüper, H. G., Dworkin, M., Harder, W. & Schleifer, K.-H.) 3352–3378 (Springer, Berlin, New York, 1992).

    Book  Google Scholar 

  10. Simoneit, B. R. T. & Lonsdale, P. F. Nature 295, 198–202 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Bazylinski, D. A., Farrington, J. W. & Jannasch, H. W. Org. Geochem. 12, 547–558 (1988).

    Article  CAS  Google Scholar 

  12. Jørgensen, B. B., Isaksen, M. F. & Jannasch, H. W. Science 258, 1756–1757 (1992).

    Article  ADS  Google Scholar 

  13. Bazylinski, D. A., Wirsen, C. O. & Jannasch, H. W. Appl. environ. Microbiol. 55, 2832–2836 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Postgate, J. R. The Sulphate-reducing Bacteria 2nd edn (Cambridge University Press, Cambridge, 1984).

    Google Scholar 

  15. Aeckersberg, F., Bak, F. & Widdel, F. Arch. Microbiol. 156, 5–14 (1991).

    Article  CAS  Google Scholar 

  16. Rabus, R., Nordhaus, R. & Widdel, F. Appl. environ. Microbiol. 59, 1444–1451 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Beller, H. R., Grbić-Galić, D. & Reinhard, M. Appl. environ. Microbiol. 58, 786–793 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Edwards, E. A., Wills, L. E., Reinhard, M. & Grbić-Galić, D. Appl. environ. Microbiol. 58, 794–800 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nielsen, H. et al. in SCOPE 43, Stable Isotopes (eds Krouse, H. R. & Grinenko, V. A.) 65–132 (Wiley, New York, 1991).

    Google Scholar 

  20. Orr, W. Amer. Assoc. Petrol. Geologists Bull. 58, 2295–2318 (1974).

    Google Scholar 

  21. Schidlowski, M., Hayes, J. M. & Kaplan, I. R. in Earth's Earliest Biosphere (ed. Schopf, J. W.) 149–186 (Princeton University Press, Princeton, 1983).

    Google Scholar 

  22. Rainey, F. A., Dorsch, M., Morgan, H. W. & Stackebrandt, E. Syst. appl. Microbiol. 15, 197–202 (1992).

    Article  CAS  Google Scholar 

  23. Rainey, F. A. & Stackebrandt, E. FEMS Microbiol. Lett. 113, 125–128 (1993).

    Article  CAS  Google Scholar 

  24. Jukes, T. H. & Cantor, C. R. Mammalian Protein Metabolism (Academic, New York, 1969).

    Google Scholar 

  25. De Soete, G. Psychometrica 48, 621–626 (1983).

    Article  Google Scholar 

  26. Radke, M., Willsch, H. & Welte, D. H. Analyt. Chem. 52, 406–411 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rueter, P., Rabus, R., Wilkest, H. et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372, 455–458 (1994). https://doi.org/10.1038/372455a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372455a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing