Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Broad tuning for spatial frequency of neural mechanisms underlying visual perception of coherent motion

Abstract

NEURAL events underlying perception of coherent motion are generally believed to be hierarchical1,2: information about local motion is registered by spatio-temporal coincidence detectors3–5 whose outputs are cooperatively integrated at a subsequent stage6,7. There is disagreement, however, concerning the spatial scale of the neural filters underlying these operations. According to one class of models, motion registration is initially accomplished in parallel at multiple spatial scales3–5, with filters tuned to lower spatial frequencies responsive to larger motion displacements than filters tuned to higher frequencies. According to another scheme, motion analysis involves a single, broadly tuned spatial filter, with optimal displacement dependent on spacing of local elements8. Here we use a masking procedure to measure the extent to which dynamic noise depicted at one spatial scale interferes with detection of coherent motion conveyed by image features at another spatial scale. Our results indicate that a single filter, broadly tuned for spatial frequency, is mediating detection of coherent motion. This finding dovetails with known physiological properties of neurons at an intermediate stage of motion processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Movshon, A. in Images and Understanding (eds Barlow, H., Blakemore, C. & Weston-Smith, M.) (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  2. Braddick, O. Trends Neurosci. 16, 263–268 (1993).

    Article  CAS  Google Scholar 

  3. Adelson, E. H. & Bergen, J. R. J. opt. Soc. Am. A2, 284–299 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Van Santen, J. P. H. & Sperling, G. J. opt. Soc. Am. A1, 451–473 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Watson, A. B. et al. J. opt. Soc. Am. A3, 300–307 (1986).

    Article  ADS  Google Scholar 

  6. Chang, J. J. & Julesz, B. Vision Res. 24, 1781–1788 (1984).

    Article  CAS  Google Scholar 

  7. Nawrot, M. & Sekuler, R. Vision Res. 30, 1439–1451 (1990).

    Article  CAS  Google Scholar 

  8. Morgan, M. J. Nature 355, 344–346 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Yang, Y. & Blake, R. Vision Res. 31, 1177–1190 (1991).

    Article  CAS  Google Scholar 

  10. Cleary, R. & Braddick, O. Vision Res. 30, 303–316 (1990).

    Article  CAS  Google Scholar 

  11. Smith, A. T. et al. Vision. Res. 34, 2425–2430 (1994).

    Article  ADS  CAS  Google Scholar 

  12. van de Grind, W. A. et al. Expl. Brain Res. 91, 135–150 (1992).

    Article  CAS  Google Scholar 

  13. Anderson, S. J. & Burr, D. C. Vision Res. 13, 1147–1154 (1985).

    Article  Google Scholar 

  14. Adelson, E. H. & Movshon, J. A. Nature 300, 523–525 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Adelson, E. H. Opt. Photon. News 2, 24–30 (1991).

    Article  ADS  Google Scholar 

  16. Williams, D. W. & Sekuler, R. Vision Res. 24, 55–62 (1984).

    Article  CAS  Google Scholar 

  17. Werkhoven, P., Sperling, G. & Chubb, C. Vision Res. 33, 463–485 (1993).

    Article  CAS  Google Scholar 

  18. Wilson, H. R. & Kim, J. Vision Res. 34, 1835–1842 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Britten, K. H. et al. Vis. Neurosci. 10, 1157–1169 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Blake, R. Broad tuning for spatial frequency of neural mechanisms underlying visual perception of coherent motion. Nature 371, 793–796 (1994). https://doi.org/10.1038/371793a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371793a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing