Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Site-selective oxygen isotope effect in optimally doped YBa2Cu3O6 + x

Abstract

IN CONVENTIONAL superconductors, the large dependence of the superconducting transition temperature (Tc) on the isotope mass (Tcm−α, with α≈0.5) gives strong evidence for electron pairing by a phonon-mediated mechanism. The copper oxide superconductors, on the other hand, exhibit a small oxygen isotope effect (α≈0.02; see, for example, refs 1–14), suggesting a mechanism more complex than simple phonon-mediated pairing15. To obtain further insight into this mechanism, it is important to determine the contribution from different oxygen sites in the crystal lattice to the total oxygen isotope effect. Recently, a negative isotope effect associated with oxygen atoms in the copper oxide planes of the crystal structure was reported13 for highly doped YBa2Cu3O6 + x, implying that the apical/chain oxygens make a substantial contribution to the total oxygen isotope shift. Here we investigate this effect in optimally doped YBa2Cu3O6 + x, by measuring separately the contributions to the total isotope shift of the planar and apical/chain oxygen sites. The sum of the site-selective isotope shifts equals that of the total measured shift, illustrating the self-consistency of our results. In contrast to the previous work13, we find that more than 80% of the total (positive) isotope effect is associated with the copper oxide planes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Batlogg, B. et al. Phys. Rev. Lett. 58, 2333–2336 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Bourne, L. C. et al. Phys. Rev. Lett. 58, 2337–2339 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Bourne, L. C., Zettl, A., Barbee, T. W. & Cohen, M. L. Phys. Rev. B36, 3990–3993 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Leary, K. J. et al. Phys. Rev. Lett. 59, 1236–1239 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Morris, D. E., Kuroda, R. M., Markelz, A. G., Nickel, J. H. & Wei, J. Y. T. Phys. Rev. B37, 5936–5939 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Hoen, S. et al. Phys. Rev. B39, 2269–2278 (1989).

    Article  CAS  Google Scholar 

  7. Crawford, M. K., Kunchur, M. N., Farneth, W. E., McCaron E. M. & Poon, S. J. Phys. Rev. B41, 282–287 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Franck, J. P., Jung, J., Mohamed, M. A-K., Gygax, S. & Sproule, G. I. Phys. Rev. B44, 5318–5321 (1991).

    Article  CAS  Google Scholar 

  9. Bornemann, H. J. & Morris, D. E. Phys. Rev. B44, 5322–5325 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Bornemann, H. J., Morris, D. E. & Liu, H. B. Physica C182, 132–136 (1991).

    Article  CAS  Google Scholar 

  11. Babushkina, N. et al. Physica C185–189, 901–902 (1991).

    Article  Google Scholar 

  12. Bornemann, H, J., Morris, D. E., Liu, H. B. & Narwankar, P. K. Physica C191, 211–218 (1992).

    Article  CAS  Google Scholar 

  13. Nickel, J. H., Morris, D. E. & Ager, J. W. Phys. Rev. Lett. 70, 81–84 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Franck, J. P., Harker, S. & Brewer, J. H. Phys. Rev. Lett. 71, 283–286 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Müller, K. A. Z. Phys. B80, 193–201 (1990).

    Article  Google Scholar 

  16. Conder, K., Kaldis, E., Maciejewski, M., Müller, K. A. & Steigmeier, E. F. Physica C210, 282–288 (1993).

    Article  CAS  Google Scholar 

  17. Morris, D. E. et al. Phys. Rev. B44, 9556–9560 (1991).

    Article  CAS  Google Scholar 

  18. Conder, K. Rusiecki, S. & Kaldis, E. Mater. Res. Bull. 24, 581–587 (1989).

    Article  CAS  Google Scholar 

  19. Conder, K., Krüger, Ch., Kaldis, E., Zech, D. & Keller, H. Physica C225, 13–20 (1994).

    Article  CAS  Google Scholar 

  20. Zech, D., Keller, H., Müller, K. A., Conder, K. & Kaldis, E. in Proc. Int. Conf. High-Temperature Superconductivity M2HTSC IV Grenoble, France 1994; Physica C (in the press).

    Google Scholar 

  21. Plakida, N. A., Aksenov, V. L. & Drechsler, S. L. Europhys. Lett. 4, 1309–1314 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Crespi, V. H. & Cohen, M. L. Phys. Rev. B48, 398–406 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Frick, M., Morgenstern, I. & von der Linden, W. Z. Phys. B82, 339–345 (1991).

    Article  Google Scholar 

  24. Vujic̆ić, G. M., Aksenov, V. L., Plakida, N. M. & Stamenković, S. Phys. Lett. 73A, 439–441 (1979).

    Article  ADS  Google Scholar 

  25. Ruani, G. et al. Physica C226, 101–105 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zech, D., Keller, H., Conder, K. et al. Site-selective oxygen isotope effect in optimally doped YBa2Cu3O6 + x. Nature 371, 681–683 (1994). https://doi.org/10.1038/371681a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371681a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing